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Abstract

The rapid expansion of data size and adoption of digital devices makes finding

relevant digital forensics artifacts challenging. Automated processes frequently result

in excessive false positives that strain human analyst resources. Additionally, these

automated processes are typically limited to a specific data domain, such as text or

images. Cross-domain solutions improve information retrieval, though work in these

areas remains sparse. This research presents a multi-domain solution that uses text

and images to iteratively improve automated information extraction.

The automated image annotation and latent topic extraction model operates in

three stages. Stage I uses local text surrounding an embedded image to provide

clues that help rank-order possible image annotations. The annotations have been

demonstrated to outperform Automated Linguistic Indexing of Pictures in Real Time

(ALIPR), one of the dominant generalized image annotation algorithms available.

These annotations are forwarded to Stage II, where the image annotations from Stage

I are used as highly-relevant “super-words” to improve extraction of topics. Stage II

demonstrates improved topic extraction over several other similar latent topic models.

The model probabilities from the super-words in Stage II are forwarded to Stage III

where they are used to refine the automated image annotations developed in Stage

I. By rank-ordering the super-words using model probability, Stage III demonstrates

that the cross-domain model improves image annotation while iterating the model

improves results further.

Finally, this research applies these techniques to a set of real-user hard drives. We

demonstrate that latent topic models offer some advantages over standard document

query techniques using real-world noisy digital forensics data.
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IMAGE ANNOTATION AND TOPIC EXTRACTION USING SUPER-WORD

LATENT DIRICHLET ALLOCATION

I. Introduction

A number of recent high-profile digital forensics cases highlight the growing im-

portance of digital data in criminal investigation. The corruption trial of Illinois

Governor Rod Blagojevich utilized digital voice recordings to cement their case [24].

Former Arizona representative Rick Renzi was found guilty in a complicated land

swap deal partially due to evidence extracted from his business documents [84]. Dig-

ital forensics is a critical element of online crime investigations [98]. Even more so,

media exploitation plays a critical role in the Department of Defense mission. Often,

rapid exploitation of digital media can produce time-sensitive intelligence that could

mean the difference between life and death, as recently highlighted by the raid on

Osama bin Laden’s compound [83].

The challenge in any large data repository is akin to finding a needle in a haystack.

Amidst the photos of a family, their dog, and documents describing their favorite

sports team’s statistics may lie the Global Positioning System (GPS) coordinates of

a key meeting between leaders of a terrorist organization. While humans may be able

to flag this information once seen, searching for and finding that information could

take too long. Computers can sift through megabytes of information in mere seconds.

Unfortunately, they lack the intuition necessary to understand complex concepts and

identify applicable topics that exist beyond basic keyword searches.

Data mining research aims to improve on the computer’s ability to extract se-

mantically meaningful information from large document corpora. The main goal,
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according to Frawley et al. [38], is to extract “implicit, previously unknown, and po-

tentially useful information from data”. For the forensics analyst, what information

is considered useful may change with the situation or be difficult to define. Relevant

results may take the form of text, still images, video, or audio in a number of different

data forms. An effective tool must be capable of searching through a wide variety of

formats, integrating information into topical clusters that can be leveraged by user

searches. While audio and video is beyond the scope of this research, images and text

are used to improve automated data search with a comprehensive search model.

Two areas of data mining, automated image annotation and text mining, have

expanded rapidly in the last couple decades [22] [4]. Automated image annotation and

Content-Based Image Retrieval (CBIR) have proven challenging, with one researcher

[93] even claiming “no actual progress” in the labeling of images. Decades of research

have been directed towards CBIR and automated image annotation techniques [22]

and while CBIR research demonstrates accurate results during controlled testing [22],

it produces decreased performance on real world data [93]. Typically, both image

annotation and CBIR tools must choose between approaches that either sacrifice

precision for generalized applicability or specialize and fail outside of their limited

domains [87]. This research focuses on a number of these problems and proposes a

model that has annotation accuracy beyond the state of the art.

Text mining attempts to add structure to an unstructured document corpus. A

number of techniques have been developed toward this goal with varied success [58],

from classification techniques that make a discrete decision on categorical assignment

to latent topic extraction. Topic-based queries are particularly applicable to this

problem domain since they provide a robust method for isolating interesting topics

amid numerous overlapping ones and decreasing data density of a returned query.

Latent topic extraction techniques, such as Latent Dirichlet Allocation (LDA) [14],
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have demonstrated high accuracy when compared against human topic assignment.

Additionally, latent topic techniques handle topic changes within a document and

provide flexibility for topic assignment at progressively smaller increments, such as

paragraphs or sentences [109].

One solution may be to leverage information in multiple embedded media types to

improve annotation and clustering. Research in multimodal fusion, or fusion of mul-

tiple data types, attempts to develop techniques for combining data domains, such

as images and text, to extract refined conclusions. For example, video has demon-

strated a strong link with audio in retrieval performance [53]. While multimodal

fusion research is limited [22], it has helped in identifying scene changes [121] and

story segmentation [139] in video. This was extended to text by Shafiei, et al. [109]

to topically segment text documents by paragraphs and sentences. Others utilize a

joint word-image modeling approach [78] [7] [60] [13] [70] that uses word and image

region co-occurrence to link topically-significant entities.

Likewise, images provide valuable context for a document and text can help

prompt image annotation. A growing body of research [7] [14] [78] uses surrounding

text, image blobs, query logs and captions to link image blobs and text using latent

topic models, such as LDA. This can be expanded to not only text, video, and images,

but cell phone usage [32].

1.1 Research Hypothesis

This research tests the hypothesis that automated image annotation and latent

topic extraction can each be leveraged to improve performance in the other. The re-

search is accomplished using a multi-stage model to validate three main assumptions.

First, local context surrounding an image can be used to improve automated image

annotation performance over existing generalized annotators. Second, image anno-
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tations can be used to improve latent topic extraction through the LDA algorithm.

Third, posterior probabilities from the LDA model can be leveraged to improve im-

age annotation and the model can be iterated as necessary to further improve results.

Finally, this research hypothesizes that some techniques within this dissertation can

be effectively used on a corpus of real-user data.

1.2 Challenges

Testing the hypothesis above requires addressing a multidisciplinary array of chal-

lenges. Automated image annotation is complex due to the unstructured nature of

image features. Latent topic extraction has a tendency to focus on broader topics at

the expense of smaller, potentially important topics. Fusing images and text into a

single context requires mapping one domain to the other where, often, these maps

are not obvious. This section briefly introduces some of the challenges this research

will address.

1.2.1 Image Annotation.

The generalized image annotation methods [130] [140] [19] are designed to work

across a broad spectrum of images, avoiding the a-priori assumptions about the data

made by domain-specialized methods. Utilizing versatile feature sets ranging from

basic color space to generalized frequency measures, these annotators use inherent

differences in image features to discriminate between categories. Unfortunately, suc-

cessful annotation requires high intra-category clustering with adequate inter-category

separation. As the number of semantic tags increase, categorical separation becomes

more difficult due to overlap.

Conversely, specialized classifiers often perform well within their domains, cor-

rectly classifying between indoor or outdoor images [117], city versus landscape [120],
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or other specific domains. The drawback to specialized image annotation methods is

they require a-priori assumptions about the data that, for a general image set may

be incorrect. Demonstrating the performance of an algorithm then requires ensur-

ing the a-priori prerequisites exist within the test data. One criticism [93] of image

tagging research blames careful data selection on the disparity between the relatively

good performance found in modern image tagging research and the poor performance

when subjected to real world data. Müller, et al. [86] demonstrated how careful im-

age and category selection within the Corel picture database can make a significant

difference in performance of an image annotator. Yet without some level of manual

data selection, real world data noise may obscure incremental gains in algorithmic

performance.

1.2.2 Latent Topic Extraction.

Active research in extracting latent topics from text using a generative model, such

as LDA [14], assumes all data points were generated from a model with hidden pa-

rameters. Unfortunately, predicting hidden model parameters is often an intractable

problem, requiring approximation techniques that are negatively affected by outliers.

Some models are sensitive to probabilistic islands [138] caused by high frequency

spikes. Data smoothing techniques are often used to mitigate these issues [14] [57]

[26], pruning outliers and smoothing spikes to produce a more accurate model [69].

Unfortunately, this destroys data that was, in concept, generated by the model.

There are certain cases where low frequency data points must be emphasized

over the noise threshold based on their significance to the model. One example of

this problem involves the melding of text mining and image annotation techniques.

Image annotation tools use image features to tag images with words. Some image

annotation tools [73] generate word tags for a query image based on a previously
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trained model. A number of these tags may be irrelevant to the actual image based

on the context, but a handful may be highly relevant. Assuming that an image tag

carries more weight when compared to a single word drawn from the document, these

tags should have a stronger influence over latent topic extraction. Merely inserting

the image tag into the document text obscures this impact due to the low frequency

of image tags. The challenge is to effectively raise the probabilistic influence of these

image-generated words without disrupting latent topic extraction within the remain-

ing words of the corpus. This could be accomplished through pruning, which risks

obscuring the model’s true parameters. Another technique involves emphasizing the

influence of these significant words to minimize the impact of the less significant data

on the model.

1.2.3 Multimodal Fusion.

Different data domains often lack direct mapping between similar entities in each

domain. Automatically extracting these mappings can be a complex task prone to a

high error rate. Image and text region co-occurrence provides one means for auto-

mated image annotation, but it implies a strong link between image blob frequency

and word frequency. Research seeking to address this limitation uses word synonym

relationships to refine image tags [8] and a common sense dictionary to link words [76].

Object recognition provides another potential, seeking to find specific objects within

an image using a signature or template [100]. Ontology-based object recognition has

demonstrated some success [106] [128] [3] at identifying general image regions such as

sky, water, car parts, and mountains. Object recognition methods, however, tend to

require complex training to account for different lighting, angles, and sizes. Blurry or

noisy images may create a significant problem with false positives and false negatives.

Additionally, object recognition requires a large, manually annotated image database
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for each object category.

1.3 Research Outline and Part I

This research tests the hypothesis in two parts. In Part I, a model is defined that

leverages information within text and images to iteratively improve both image an-

notation and latent topic extraction. Part II analyzes the Real Data Corpus (RDC),

a corpus of real-user hard drives, to determine which techniques defined in this re-

search could apply towards the digital forensics domain. Part I is accomplished in

three stages, each described in the following sections.

1.3.1 Stage I: Automated Image Annotation.

Stage I tests the hypothesis that local context surrounding an image can be used

to improve automated image annotation. This is accomplished by using the text

surrounding an image to select an appropriate image annotation algorithm, then

rank-orders possible annotations based on the results of those algorithms. First,

words are converted into into synonymous sets (synsets), or word meanings, using

WordNet [34] to identify all possible contextual meanings for each word. Those

synsets with meanings related to people (e.g. doctor, philanthropist, etc) are tested

using face detectors. All other synsets not related to people are tested against a

set of specialized synset-based signatures generated from ImageNet [27] images and

rank-ordered according to their estimated contextual accuracy. Since the purpose of

this research is to develop methods that work on general noisy data, a wide range of

Wikipedia articles [28] with embedded images is chosen for testing. Categories are

selected based on their likelihood of including topically-oriented images, though no

other data selection is performed beyond the automated pruning of sparse data.

The results are compared against the Automated Linguistic Indexing of Pictures
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in Real Time (ALIPR) algorithm [73], a popular generalized image annotation algo-

rithm. Results from Stage I demonstrate that leveraging WordNet and using local

context, even with simple image annotation techniques, significantly improves results

over the ALIPR algorithm.

1.3.2 Stage II: Super-Word Latent Dirichlet Allocation.

Stage II tests the hypothesis that image annotations can be used to improve auto-

mated topic extraction from a document corpus. The developed Super-Word Latent

Dirichlet Allocation (SWLDA) model assumes a generative process based on LDA,

where the model is assumed to have generated topics, documents, and words based on

multinomial distributions with hidden parameters. In LDA, the priors for a multino-

mial distribution of words and super-words are generated via a Dirichlet distribution.

The Dirichlet distribution has been demonstrated [14] to produce more reasonable

priors for the multinomial distribution than other methods. By using independent

Dirichlet priors for the separate word and super-word multinomial distributions, the

super-words have greater influence on topic extraction. Unlike multimodal LDA mod-

els, a common vocabulary links the probabilistic influence of words and super-words.

Results indicate statistically-significant improvements in document topic clustering

when super-words are incorporated over standard LDA with text only.

Stage II is tested against an assortment of similar algorithms. Latent Semantic

Analysis (LSA) [26] provides the baseline measure while LDA [14] is the primary

comparison algorithm. Other algorithms include Blob Multimodal Latent Dirichlet

Allocation (BMMLDA) and Weighted Term Latent Dirichlet Allocation (WTLDA),

all described in further detail in Chapter V. Results indicate that SWLDA does as

good or better than the test algorithm using document retrieval measures.
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1.3.3 Stage III: Image Annotation Refinement.

Stage III tests the hypothesis that posterior probabilities from the model defined

in Stage II can be used to further improve image annotations defined in Stage I. This

process is iterated as many times as necessary to converge on a solution. Stage III

results are compared against Stage I and II results to measure performance improve-

ments. While Stage II results did not improve significantly, the Stage I annotations

improved in average relevance.

1.4 Part II: Evaluation on Real-User Data

One of the primary uses for the techniques outlined in Part I is in searching for

relevant documents within user data. Real-world user data in a digital forensics con-

text is a challenging domain, often lacking structure or cohesiveness. Digital forensics

is one area where the problems defined above are taking shape at an increasing pace.

Part II analyzes the techniques within Part I from a digital forensics practitioner’s

point of view, using real-world user data.

A recent article by Garfinkel [41] states that the rapid growth of digital media

indicates digital forensics is at the end of a Golden Age. Referred to as the “big data

problem” [89], the expansion of data storage device size, digital devices, and cloud

storage creates a data surge that can result in poor decision making, duplicated efforts,

lost sales, and low productivity [33]. For the forensics or intelligence analyst, these

can translate to lost opportunities, failure to present incriminating or exonerating

evidence or, in extreme cases, even loss of life.

Preserving and preparing data for processing can be a daunting task. While a long

and involved process [71], the bottleneck typically results from a lack of analyst time

[88]. Unfortunately, today’s analyst must deal with a variety of devices, from hard

drives, digital cameras, thumb drives, cell phones, and tablets, among others. Cross-
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drive analysis offers techniques to extract and correlate information across multiple

data sources, potentially decreasing analyst burden.

The latent topic models described in this dissertation offer a potential solution

towards effectively decreasing analyst time. By removing large numbers of files from

the search space and organizing those files into topics, investigations may become

easier. Latent topic models, such as the Latent Dirichlet Allocation [14], have been

demonstrated successfully on large file corpus [127] [48] [94], though they have not

been tested on real world storage devices. The RDC [42] offers a robust set of real-

world disks from a variety of different countries and provides a valuable environment

for testing topic models efficacy in the digital forensics domain.

Part II makes two primary contributions. First, it analyzes the RDC [42] from a

digital forensics standpoint to identify areas for potential research and assesses how

topic models could best be used. Second, it uses the RDC to compare traditional

regular expression keyword search against the LDA. This is accomplished by first

comparing document retrieval using regular expression keyword search against re-

trieval using LDA. Finally, automatic topic extraction using LDA is analyzed for

accuracy.

1.5 Assumptions

Clustering of data in some form is required for accurate classification. This re-

search assumes the data chosen includes latent topics that can be extracted using

document and image features. It assumes the categories chosen by the INitiative

for the Evaluation of XML Retrieval (INEX) 2007 researchers are accurate and that

image annotations performed by the Amazon Mechanical Turk (AMT) workers ac-

curately represents the opinions of the average human. The SWLDA model assumes

a generative model exists with parameters that can be estimated, while the image
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annotation methods assume patterns in features that provide adequate similarity

measures, matching human semantic categories. Additionally, the image annotation

model assumes the words surrounding an image are topically relevant to the image

itself.

1.6 Document Layout

Chapter II presents a review of automated image annotation, text mining, and la-

tent topic methods considered for this research. It provides a summary of comparison

testing performed against several methods and justification for the techniques chosen.

Chapter III provides a description of the overall system design, which describes how

the different stages presented in the following three chapters fit together. Part II

describes the experimental design, testing and results on the RDC in Chapter VII.

Following this is a discussion of the overall research findings and conclusions.

11



II. Background

This research hypothesizes that automated image annotation and latent topic

extraction can each be leveraged to improve the performance of the other. The

three stages defined in Chapter I require a multidisciplinary approach that leverages

specific advantages of the automated image annotation and latent topic extraction

domains. The implied assumption is that we can take advantages of the strength of

each approach while minimizing their limitations.

This chapter provides background on several areas essential to the presented data

mining and retrieval approach. First, it is assumed most images will not include ro-

bust tagging information. Successful image annotation therefore requires analysis of

image features, driving a discussion of Content-Based Image Retrieval (CBIR) and

automated image annotation. Following this is a discussion on text mining and com-

parison techniques which provides a foundation for the Super-Word Latent Dirichlet

Allocation (SWLDA) model discussed in Chapter V. Other applicable techniques

are also discussed, including ensemble classifiers, multimodal latent topic extraction,

among others, along with some of the complications with those algorithms. Finally,

large corpus search is reviewed along with potential solutions for improving document

search and retrieval accuracy.

2.1 Content-Based Image Retrieval / Automated Image Annotation

Many modern data repositories consist of more than just text information. Web

pages, word processor documents, spreadsheets–all can include embedded images,

videos, or tables that provide context and help define topical focus of a document.

Performing latent topic extraction while ignoring the images within the document

skips potentially significant data. Likewise, to attempt to perform image annotation
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Figure 2.1: Content-Based Image Retrieval (CBIR) Taxonomy.

while ignoring local text abandons valuable context.

CBIR involves retrieving similar images based on image features derived from

pixel information to respond to user queries. CBIR attempts to close the “semantic

gap”, or the difference between how users interpret an image and what can be derived

by a computer using image features [112]. Automated image annotation is a similar

approach with the goal of assigning metadata, such as keywords, to the image based on

image features [22]. Users can then perform keyword searches or utilize combinations

of approaches to retrieve relevant data.

Whether termed CBIR or automated image annotation, approaches tend to follow

the taxonomy adopted and modified from Datta, et al. reproduced in Figure 2.1

[22]. Features are first extracted from the image and, in some cases, summarized to

a representative set of data. A representative signature is developed based on the
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image or set of images, then that signature is compared to others in an attempt to

draw conclusions about unknown data.

Feature extraction is one of the most crucial steps in pattern classification since

some features discriminate better than others. A wide variety of techniques exist and

have been thoroughly covered in several surveys [22] [80]. Color space is a frequently

used feature [73] [129] [22] based on proven ability to generalize and broad acceptance

in the literature. Frequency is another common feature, using wavelets [129] [73] [130]

or a variety of other means (see Section 2.1.1.2 for details). Shape, size, and salient

point have also been used [22].

Adding these features potentially creates a high dimensional space. An image may

consist of tens to hundreds of thousands of pixels. Large numbers of dimensions can

impact algorithmic performance due to what is commonly called the “curse of dimen-

sionality”. Summarization techniques can be used to reduce the dimensionality to a

reasonable level. Many utilize color space summarization with histogram bins [120]

[117] or k-means averaging [73] [130]. Frequency may be measured using Daubechies

or other wavelet transforms [129] [73] [130] and summarized similarly to color.

Summarizing the data in a way that maintains representative image information

is not an easy task. The difficulty is compounded by the complexity of matching

image features using a similarity measure. Many summarization techniques exist

[22], from simple histograms to complex kernel-based signatures. Similarity measures

for fixed-bin histograms are fast but imprecise [101]. Basic histogram comparison,

such as bin-by-bin dissimilarity measures, provide a rough estimate of similarity, but

fail to handle situations where histograms are off by one bin. Cross-bin similarity

measures, such as Quadratic Form Distance, account for this, but still require fixed

bins. The Earth Mover’s Distance (EMD) [101] provides a signature-based approach

that allows for inconsistently-sized histogram bins and measures the amount and
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distance of “earth” that must be moved to convert one histogram to another. Too

many or too few bins create performance issues, therefore, bin size must be fine-tuned

to ensure performance. The next sections discuss available features and define those

chosen for comparison testing.

2.1.1 Features.

The four most commonly-used features in CBIR include color, texture, shape, and

salient point [22]. Color provides essential context that allows the viewer to distin-

guish between an image of a forest during the summer and one in the fall. Certain

spectra are more prevalent in a natural scene versus urban images [120]. Texture is

crucial for distinguishing between a red pie chart and a red rose–both may include

similar color histograms but the rose would have a higher frequency than a solid color

chart. Urban scenes include sudden changes in horizontal and vertical frequency with

low frequency areas in-between, while a natural scene includes consistent moderate

frequency in all directions. Shape is difficult to represent and many techniques are

slow, though significant research has been accomplished with shape over the last two

decades [22], including categorization based on object structures [21]. Salient points

can be effective at representing local information, though it does not generalize well

to large databases [107].

2.1.1.1 Color Space.

A number of color spaces exist, each solving a specific problem [15]. For instance,

the NTSC color space was developed for television since it was easy to separate

gray-scale information from color. This meant the same image could be displayed

on both a color TV and black-and-white. RGB worked well for computer monitors

that represented color as a combination of red, green, and blue pixels. While useful
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for their particular purposes, they do a poor job of representing spectrum proximity

as humans perceive it. HSV is far closer to human perception, using a mixture of

tint, shade, and tone to describe a color, though it tends to bias towards painting

representation [45] [62] [67]. The CIE-LUV and LAB color spaces use hue, saturation,

and lightness measures, and come closest to approximating human vision. CIE-LUV

is particularly useful when dealing with additive sources (such as a color monitor);

CIE-LAB is best for reflexive surfaces [99] and has a solid body of research in CBIR

and image annotation [101, 36, 75].

Transformation between color spaces can be accomplished using a variety of tech-

niques. The RGB color space used in most image formats can be transformed to the

CIE XYZ color space using a 3x3 matrix transform given in Equation 2.1. Conversion

to CIE LAB space is then defined by Equation Set 2.2 where Xn, Yn and Zn are the

tristimulus values for the constant energy white point, typically Xn = Yn = Zn = 1/3

[104].


X

Y

Z

 =


0.412453 0.357580 0.180423

0.212671 0.715160 0.072169

0.019334 0.119193 0.950227

 ∗

R

G

B

 (2.1)

L =


116 ∗ (Y/Yn)1/3 where Y/Yn > 0.008856

903.3 ∗ (Y/Yn) otherwise

a = 500 ∗ (f(X/Xn)− f(Y/Yn))

b = 200 ∗ (f(Y/Yn)− f(Z/Zn))

f(t) =


t1/3 where t > 0.008856

7.787 ∗ t+ 16/116 otherwise

(2.2)
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2.1.1.2 Frequency Measures.

Frequency is essential for distinguishing between a red car and a red pie chart,

given the same average color. Yet, defining frequency in a meaningful way is not

straightforward. Initial attempts to describe texture used rough texture measures

such as the 28 descriptors based on a gray-tone spatial dependence matrix [50]. These

are relevant only for an entire region. Later research by Tamara, et al. [118] attempted

to improve on this, defining six basic texture characteristics. These include coarse-

ness, contrast, directionality, line-likeness, regularity, and roughness. Since then, a

number of methods have been in use in an attempt to accurately quantize frequency

information. Research using the Shape-Invariant Feature Transform (SIFT) [127]

[136] [132] [78] rely on a 128 byte descriptor that summarizes the edge information in

a region. Other research [136] [36] utilizes the Gabor feature set, calculating orienta-

tion and scale information at each pixel and consolidating these into a region or global

feature vector. Still others utilize the Discrete Cosine Transform (DCT) [36] [117], a

Fourier-related transform that can be used to measure a region-based frequency.

The Daubechies-4 fast wavelet transform represents localized changes in color

better when compared to simpler wavelets (Haar) [23] and has proven performance

in other CBIR research [129] [74] [130] [20] [61]. The Daubechies-4 wavelet utilizes

two vanishing moments to represent the image frequency and, while initial experi-

mentation indicates this works well, further testing is required to determine if more

vanishing moments would represent the signal better (more vanishing moments work

better for complex signals).

The fast wavelet transform utilizes two filters: a lowpass decomposition and a

highpass decomposition. Depending on how they are used, frequencies can be ex-

tracted in the horizontal, vertical, or diagonal directions. In Equations 2.3 and 2.4

ϕ(x) is the scaling function and ψ(x) is the wavelet function. Variable h is considered
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(a) Original Image. (b) Daubechies-4 Fast Wavelet Transform.

Figure 2.2: Image Frequency Example Using the Daubechies-4 Fast Wavelet Transform.

the father wavelet, while hψ(n) is the highpass decomposition filter and hϕ(n) the

lowpass.

ϕ(x) =
∑
n

hϕ(n)
√

2ϕ(2x− n) (2.3)

ψ(x) =
∑
n

hψ(n)
√

2ϕ(2x− n) (2.4)

The various horizontal, vertical, and diagonal frequency bands can be calculated

via Equations 2.5, 2.6, and 2.7 respectively [45].

ψH(x, y) = ψ(x)ϕ(y) (2.5)

ψV (x, y) = ϕ(x)ψ(y) (2.6)

ψD(x, y) = ψ(x)ψ(y) (2.7)

Since frequency resolution is only gained by sacrificing spatial resolution and vice-
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versa, each iteration of the filter produces n
4

coefficients. This is illustrated in Figures

2.2(a) and 2.2(b). The image of the lighthouse is processed using the Daubechies fast

wavelet transform and results in the horizontal frequencies in the upper right, the

vertical frequencies in the lower left, and the diagonal frequencies in the lower right.

The upper left square visualizes the second application of the filter set. The three

squares are one-fourth the size as they must sacrifice spatial resolution for frequency

resolution in the lower frequencies. This is repeated a third and fourth application

with the remaining image coefficients shown in the final upper left corner.

2.1.2 Summarization and Clustering.

The color and texture for each pixel can be represented by a vector of feature

values. Utilizing data from each pixel would create an image vector with high dimen-

sionality. The “curse of dimensionality” creates a sparse data set that requires an

exponentially large data set for many methods to function properly. This limitation

can be mitigated by reducing, or summarizing, the data to a set of representative vec-

tors. Earlier examples [116] [115] addressed dimensionality issues with color histogram

indexing. More recent methods reduce data to a representative mean vector. Unsu-

pervised clustering techniques, such as k-means [52], organize vector means based on

similar colors or frequencies. This, unfortunately, ignores pixel location or contiguous

regions.

Segmentation by region maintains pixel neighbor information, attempting to group

pixels into regions based on proximity and pixel value thresholding. The goal is a set

of related objects or entities within the image such as boats and water. One of the

earliest segmentation approaches [81] uses pixel vector data consisting of color and

frequency to compute gradient flow for edge detection. A similar approach, Blobworld

[17], combines color, texture, and positional information for each pixel, clustering
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with an Expectation-Maximization algorithm to identify regions. Shi and Malik [111]

recently defined a graph-based segmentation that treats each pixel as a node and color

change as an edge. It attempts to segment the image using eigenvalues to determine

the optimal cut configuration. Felzenszwalb and Huttenlocher [35] developed Efficient

Graph-Based Segmentation, a faster method using a greedy approach, combining

nodes based on edge thresholds. The threshold is based on a user set parameter

divided by the total size of the current node. The larger a node becomes, the lower

an edge must be before it no longer combines nodes.

Ideally, the regions maintain image entities more completely than pixel value clus-

tering. Chen and Wang [19] were able to utilize a region-based fuzzy feature matching

approach to conduct effective CBIR. Li, et al. [74] created a region-based similar-

ity comparison that attempts to match sets of individual regions that eventually

was incorporated into the Semantics-sensitive Integrated Matching for Picture LI-

braries (SIMPLIcity) [130] image retrieval system.

Figure 2.3: Efficient Graph-Based Segmentation with Mean Threshold [35] [90].

This work uses the Efficient Graph-Based Segmentation [35] to produce image

regions whose vector means represent features common to all images of a particular
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synset. Efficient Graph-Based Segmentation utilizes a ratio of region size to threshold

node merging based on edge gradient. Unfortunately, this requires parameter tuning

in relationship to image sizes. In an image with numerous pixels, the threshold

shrinks as pixel size increases, resulting in a high number of regions. An example

of the Efficient Graph-Based Segmentation with Mean Thresholding can be found in

Figure 2.3. This is a complex image resulting in a large number of regions.

Algorithm 1 takes in an image, along with parameters defining the functioning of

the algorithm. The paramter min size defines the smallest number of pixels that can

be used to define a region. c defines a threshold of pixel differences that indicate when

regions should be combined together. Parameter mean dist defines the distance in

the mean pixel value that two regions can be apart before they are combined together.

This parameter handles large regions of very similar features that, because of their

size, did not combine together as they should have. Finally, sd factor indicates the

minimum differences in standard deviation that two images can have before they are

no longer combined together. This can be used to prevent regions with wide color

variance from combining with regions having little variance just because their means

are close.

The algorithm starts by creating a node for every pixel with edges based on

adjacent pixels. Edge weights are based on pixel differences. Nodes are combined

using a threshold that decreases as the region gets larger, so eventually large regions

require very similar colors for a region to be combined. Further information on this

algorithm can be found in [35].

An image or set of images can then be represented by a signature containing the

vector information. Signatures can then be compared against other signatures to

categorize images using discriminant methods, unsupervised clustering, supervised

clustering, or a number of other methods.
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Algorithm 1 Efficient Graph-Based Segmentation

Input: Image, min size, c, mean dist, sd factor
Output: Pixel regions
Create graph G = (V,E) where each pixel is a node V and adjacent pixel is an
edge E.
Initialize edge weights to Euclidean pixel value distance
Sort E by non-decreasing edge weight
for all edges ei ∈ E with connected nodes ni and nj do

if weight(ei) <= c/size(ni) and weight(ei) <= c/size(nj) then
Combine nodes nj and nk connected by edge ei into new node nl

end if
end for
for all nodes ni in N do

if size(ni) < min size then
Combine node ni with neighbor node of lowest threshold

end if
end for
for all edges ei ∈ E with connected nodes ni and nj do

Calculate µ and σ of pixels in the region represented by nodes ni and nj
Calculate distance factor d = mean dist ∗ (sd factor/average(σni , σnj)
Calculate Euclidean distance between means dist = Euclidean(µni , µnj)
if (dist < d) then

Combine nodes nj and nk connected by edge ei into new node nl
end if

end for
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2.1.3 Signature Comparison and Similarity Measures.

Once a representative signature has been built, a method must be identified to

measure similarity. Much of the earliest research in CBIR and automated image

annotation relied on distance-based functions for image comparison. Pixel values,

frequency information, and position, among other features, can all be stored in vec-

tor form. Euclidean and Manhattan distance provide basic measures of similarity

that can be used, along with other measures, to compare pixel information from

one image to another [43]. Nearest neighbor has been used successfully in a num-

ber of papers [132] [44] [80] for its simplicity and discriminative ability. k-means

and Expectation-Maximization of Gaussian functions has also demonstrated success

in clustering images and image regions [31]. Yet, every spatially-oriented measure

assumes relevance in distance calculations between data points. The challenge is to

define a space where distance has meaning, which may be simple when using color as a

global descriptor, but becomes challenging when using ellipses, cylinders, and spatial

relationships [21]. Some of the more promising histogram or signature-based distance

measures include Earth Mover’s Distance (EMD) [101], Perceptually-Modified Haus-

dorff Distance [92], and the Signature Quadratic Form Distance [11]. We review EMD

in more detail, due to its wide use in existing research [47] [119] and useful attributes

for CBIR [101].

2.1.3.1 Earth Mover’s Distance (EMD).

EMD [101] provides a signature-based approach that allows for inconsistently-sized

histogram bins and measures the amount and distance of “earth” that must be moved

to convert one histogram to another. It has been successfully used in CBIR to match

local invariant features [47] and [119]. Where previous histogram comparison methods

required a fixed bin count and width, EMD can handle adaptive-bin histograms, or
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signature-based models. It does so by solving a transportation problem to determine

the near-optimal amount and distance of “earth” required to convert one histogram to

another. The transportation problem itself is intractable, requiring an approximation

technique with relatively high algorithmic complexity. The OpenCV library [1] has

an effective implementation of the function that is used in this research.

2.2 Ensemble Classifiers

An ensemble classifier is a set of classifiers whose individual decisions are com-

bined in some way [29]. In many cases, the ensemble of classifiers are more accurate

than individual classifiers, as long as the individual classifiers are diverse and produce

better-than-random results [49]. In concept, an ensemble classifier allows for a com-

plex modeling of the search space not possible with other classifiers such as k-means

or discriminant analysis. It has been used in CBIR to select a small set of features

among a wide range of possible features [113] [62], and to improve classification us-

ing domain knowledge [77]. In the image search space, there are sets of images that

lend themselves to other classifiers better than others. The image classifier being

proposed in Chapter IV depends on representative images that define a word. When

the word is people-related, such as ‘doctor’ or ‘nurse’, it becomes difficult to develop

a representative sample for each word that is adequately distinct from the other.

This requires specialized algorithms for classifying images with humans as opposed

to images without. Additionally, graphs or clip-art also will rarely look like images

of their real-world counterpart and require optical character recognition or similar

means to extract meaningful information. Chawla, et al. [18] found that intelligent

partitioning of the data set can yield better results. By partitioning the data into

disjoint sets, then normalizing the results at the end, each classifier can be optimized

towards its particular purpose.
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2.2.1 Graph and Clip Art Detection.

For classifiers largely based on patterns within colors or frequency, clip art or

graphs pose problems. A clip-art image of a cow is going to have a very homogeneous

color histogram with sharp spikes in frequency followed by very low frequencies. Con-

trast this with an image of a real cow which includes a variety of shades and fairly

smooth textures. Intuitively, it follows that clip art and graphs must be treated

differently than regular images. Popescu, et al. [95] proposed a simple method for

identifying clip art and graphs using histogram analysis. The SIMPLICity system

[130] uses sector analysis of high frequencies to detect graphs, or low frequency im-

ages. Once a graph or clip-art is detected, optical character recognition could be run

on the image.

2.2.2 People Detection.

A number of techniques exist for detecting people in still images and generally

fall into two categories. The first involves spectral analysis of the image looking for

skin-tones. Skin color occupies a very narrow band, becoming almost a single blob in

HSV color spaces [66]. Simple spectral analysis can detect skin with high accuracy

regardless of lighting level or luminescence value [122]. The simplest method uses

a straightforward threshold, however, Gaussian fitting has been successfully used by

training with skin versus non-skin images [66].

The second involves identifying human features, such as faces and limbs. A Haar-

like feature cascade classifier has been used successfully [123] to identify faces in

images. Shape context has also demonstrated success at identifying people [108]

using edges extracted with a Canny detector. Fleck, et al. [37] combined color skin

detection with limb analysis to identify objectionable images based on body position.

A wide variety of additional techniques [105] are available for people detection, ranging
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from motion video techniques to still images.

2.3 Context-Based Image Annotation

Clustering image segments with text makes one large assumption–that segments

of sky and water have topical relevance with other words in a document. Often, an

image’s topical relevance requires more than just information from a single segment.

Linking segments into contextually-significant entities is challenging and it is often

unlikely that documents with images containing clouds or sky are going to mention

clouds or sky. It is likely the entire discussion is about the aircraft, tornado, or other

entity that dominates the image. Hence, local context surrounding the image can

provide crucial data to drive image annotation over simple corpus co-occurrence.

Most images are embedded in context information of some kind: within a named

directory structure, linked in a web page, an attached to an e-mail or embedded

within a word processing document. One of the first examples of utilizing context

information in image tagging [134] uses Latent Semantic Analysis (LSA) to take

advantage of image feature and word co-occurence. Barnard, et al. [7] tested several

methods besides what has been covered, the first being an extension on Hofmann’s

hierarchical model for text [56] into multimodal representations. It uses soft clustering

to arrange co-occuring text and image segments into a tree structure. Higher levels on

the tree represent more general words, such as blobs representing the sky. Extending

Latent Dirichlet Allocation (LDA) beyond the document corpus, Liu, et al. [78] link

image blobs with text into a large-scale, parallel infrastructure designed for web image

tagging. They utilize query logs to help facilitate effective image tagging, along with

captions and surrounding text. All these techniques require a significant number

of images and words to effectively extract latent topics [60]. This, in addition to

the issues with unsupervised clustering of large data sets described in Section 2.6,
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complicate effective utilization of these methods for small or large data sets.

Classifier selection is merely one piece; specialized classifiers must be able to lever-

age this contextual information to improve classification. Jin, et al. [63] use semantic

knowledge about words and word relationships to refine annotation. Barnard, et al.

[8] takes this a step further, using Wordnet synonymous relationships to group image

tags. Lieberman and Liu [76] use semantic analysis and a common sense dictionary to

identify sentence subjects and link them with words that commonly appear together.

Object recognition provides another potential, seeking to find specific objects

within an image using a signature or template [100]. Ontology-based object recogni-

tion has demonstrated some success [106] at identifying general image regions such as

sky, water, and mountains. Wang, et al. [128] utilized a manually-crafted ontological

hierarchy for animal characteristics (texture, color, shape, etc). It was able to sig-

nificantly improve animal detection in images over purely textual searches. Agarwal

et al. [3] focuses on specific elements of an object, such as car wheels or the front

grill. They automatically construct a vocabulary of vehicle parts and train a clas-

sifier to identify existence of these parts in unknown images. Chai, et al. [21] used

edge detection to search for ellipses and quadrangles, identifying and discriminating

between both cars and bicycles. Object recognition methods tend to require complex

training to account for different lighting, angles, and sizes. Blurry or noisy images

may create a significant problem with false positives and false negatives. Addition-

ally, object recognition requires a large, manually annotated image database for each

object category.

2.4 Text Mining

Where CBIR and image annotation must draw inference from ambiguous pixel

information, text mining can take advantage of a known set of dictionary words.
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Still, ambiguity complicates data retrieval. A simple keyword search text query of-

ten returns far more documents than are relevant, yet misses synonyms with higher

relevancy. Document clustering attempts to isolate natural groupings that can be

leveraged based on either a new unknown sample or user query. Clustering has been

divided between discriminative and generative types. Discriminative clustering uses

pairwise distances between data points and optimizes an objective function to produce

optimal clustering. Contrast this with generative models that assumes an underlying

generative distribution for the data and attempts to predict distribution parameters

(maximizing fit). While many generative models exist, several have had significant

success in recent years, including the Probabilistic Latent Semantic Indexing [57] and,

more recently, Latent Dirichlet Allocation [14]. These utilize the “bag-of-words” as-

sumption, disregarding word order within documents and document order within a

corpus.

2.4.1 Hierarchical Clusters.

The challenge for clustering algorithms is to extract complex topics from a large,

potentially diverse document corpus. Hierarchical clustering has been the dominant

clustering technique [5] in text mining. It gradually clusters documents, or the small-

est hierarchy, into a progressively larger hierarchy. While useful since the corpus can

then be browsed, it does not scale well and performs poorly in a large document corpus

[5]. Partitioning algorithms, such as k-means, are generally accepted to work better

than hierarchical, especially when it comes to “bisecting” k-means [114]. Further

refinement of partitioning algorithms, including Expectation-maximization, are also

available. Graph-based algorithms have demonstrated some success, but many algo-

rithms suffer from the scalability problem of hierarchical methods. While a number of

other clustering algorithms have been applied to document clustering, an exhaustive
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review is outside the scope of this dissertation.

Two clustering algorithms have demonstrated repeated success at clustering large

document corpus. The Self-Organizing Map provides an efficient way to create an

”internal representation” of the input signals and clustering data around a trained

lattice of nodes [68]. It has the advantage of being relatively fast, can operate on

large data spaces with high dimensionality, and is not as hampered as other methods

by sparse matrices. LSA [26] utilizes Singular Value Decomposition (SVD) to take

advantage of word co-occurrence. Probabilistic Latent Semantic Analysis (pLSA) [57]

provides a statistical foundation for LSA by using a multinomial distribution with

priors generated by a uniform distribution. LDA takes this a step further by using a

Dirichlet distribution to generate priors and has been widely cited due to its simplicity

and applicability across a wide range of data mining applications [14].

2.4.2 Latent Semantic Indexing.

Latent Semantic Analysis (LSA) [26] uses SVD to rotate the vector space matrix

consisting of word frequencies in documents. SVD produces the joint probability

model P = ĤΣ̂V̂ t. In Blei, et al. [14], Û corresponds to the generative probability of

a document given a topic and V̂ the probability of a word given a topic. Subsequently,

the problem can be simplified by thresholding the lowest K singular values in Σ to

isolate interesting topical clusters. pLSA [57] expands on LSA using a different objec-

tive function based on the likelihood function of multinomial sampling and attempts

to maximize the model’s predictive power. While effective, this algorithm provides a

generative model for words but is unable to predict document generation. Addition-

ally, the large, sparse matrix complicates necessary matrix inversion and increases

algorithmic complexity.
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2.4.3 Bayes Network.

A Bayes network is a probabilistic model typically represented as a directed acyclic

graph that models a series of random variables and their relationships. Inferences can

be made about nodes in the network given parent or child nodes, making the Bayes

network a powerful tool and essential for the next discussion about LDA.

2.4.4 Latent Dirichlet Allocation.

Latent Dirichlet Allocation (LDA) is a generative probabilistic model useful for

extracting latent topics within a document corpus. It was originally defined by Blei,

et al. [14] in 2003 and initiated a surge of research, including [48] [78] [109]. LDA

models each item of a collection as a finite mixture over a latent set of topics. It is con-

sidered a generative model, meaning that documents and topics assumed to generate

words according to the model’s distributions. Unfortunately, the model parameters

are usually not known; only the generated documents and words are available. Us-

ing estimation techniques such as Expectation-Maximization (EM) or Markov Chain

Monte-Carlo (MCMC) simulations, these parameters can be approximated and used

to predict future words or documents.

Like many of the other latent models, LDA makes the “bag-of-words” assumption,

treating each document as a set of unordered words. Each document, utilizing the

vector space model [103], can be represented as a vector histogram of word frequency.

The method is illustrated by the plate diagram in Figure 2.4. The outer plate repre-

sents M documents while the inner plate represents the N words within the corpus.

The prior probability Dirichlet parameter α and its generated multinomial distribu-

tion θ produce per-document topic distributions, while the multinomial distribution

φ represents word topic distributions.

The generative model assumes the process defined in Algorithm 1 [14], where a
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Figure 2.4: Latent Dirichlet Allocation Plate Diagram [14].

defined model generates documents, topics, and words according to the given proba-

bility distribution.

Algorithm 2 LDA Generative Process

1. Choose N ∼ Poisson(ξ)

2. Choose θ ∼ Dir(α)

3. For each of the N words wn:

(a) Choose a topic zn ∼Multinomial(θ)

(b) Choose a word wn from p(wn|zn, φ), a multinomial probability conditioned
on the topic zn

q(θ, z|, γ, φ) = q(θ|γ)
N∏
n=1

q(zn|φn) (2.8)

The goal is to determine the parameters of the hidden generative model using

Equation 2.8. In this equation, the Dirichlet parameter γ and multinomial parameters

φ are the free variational parameters [14]. The matrix z includes word-document topic
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Figure 2.5: Latent Dirichlet Allocation with Smoothing Plate Diagram.

assignments and w the word list.

Most LDA implementations perform some form of data smoothing. This is demon-

strated in Equation 2.5 by the additional Dirichlet distribution with priors β, repre-

senting the topic by vocabulary stochastic matrix. Data smoothing often improves

results by eliminating outliers and smoothing frequency spikes but can result in loss

of fidelity. This will be discussed further in Section 2.6.

Solving for the model parameters is an intractable problem [14]. However, several

techniques have evolved to solve approximations of optimal parameter values. In

the original LDA work [14], Blei, et al. define a Bayes approach where one seeks to

define a lower bound for Equation 2.9. They do this using Expectation-Maximization

to maximize the lower bound by adjusting the parameters α and β (Equation 2.10)

during each iteration. This is, however, a relatively costly calculation when compared

with Gibbs Sampling [48].

(γ∗, φ∗) = argmin
(γ,φ)

D(q(θ, z|γ, φ)‖p(θ, z|w, α, β)) (2.9)
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(α, β) =
M∑
d=1

log p(wd|α, β) (2.10)

2.4.4.1 Gibbs Sampling.

Gibbs sampling offers a simple iterative approach to LDA parameter estimation

that provides acceptable approximation. It uses the Markov Chain Monte-Carlo

(MCMC) to converge to the target distribution by sampling each word and iteratively

adjusting the model parameters based on the word topic. This is accomplished using

Equation 2.18 where a variable is sampled, conditioned on the other variables. The

first ratio in the sampling Equation 2.18 uses word frequency by total words, φ̂
(w)
j .

The second ratio divides word-topics by total words in that document θ̂
(d)
j . Both

leave out the current assignment of zi and the results are used to randomly choose

a new topic according to the current distribution. This process iterates until the log

likelihood stabilizes [48].

P (z|w) =
P (w|z)P (z)∑
z P (w|z)P (z)

(2.11)

Each term is expanded and assumed to have the indicated distribution, given as

p(wi|zi, φ(zi)) ∼ Discrete(φ(zi)) (2.12)

p(φ) ∼ Dirichlet(β) (2.13)

p(zi|θ(di)) ∼ Discrete(θ(di)) (2.14)

p(θ) ∼ Dirichlet(α). (2.15)

Based on the definitions of a Dirichlet and discrete distribution, the Bayes formula

in Equation 2.11 is expanded into Equations 2.16 and 2.17.
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P (w|z) =

(
Γ(Wβ)

Γ(β)W

)T T∏
j=1

∏
w Γ(n

(w)
j + β)

Γ(n
(·)
j +Wβ)

(2.16)

P (z) =

(
Γ(Tα)

Γ(α)T

)M M∏
d=1

∏
w Γ(n

(d)
j + α)

Γ(n
(d)
· + Tα)

. (2.17)

These equations are simplified by integrating out φ and θ [48], thus computing

the joint distribution P (w, z). P (w, z) = P (w|z)P (z) and φ and θ are isolated to

each term, allowing us to integrate each out separately. Eliminating constants with

respect to a change in the topic z results in Equation 2.18.

P (zi = j|z−i, w) ∝
n
(wi)
−i,j + β

n
(•)
−i,j +Wβ

n
(di)
−i,j + α

n
(di)
−i + Tα

(2.18)

Solving for P (z|w) must be approximated by using MCMC [48] to iteratively solve

for z. Theoretically, this method could converge to the true model given an infinite

number of samples. We choose a number of iterations that provides effective latent

topic extraction without creating undue processing overhead.

2.4.5 Latent Dirichlet Co-Clustering.

While LDA has demonstrated wide-spread application for text clustering, it still

assumes topical probability distribution across the entire document. Shafiei and Mil-

ios have developed a technique called Latent Dirichlet Co-Clustering (LDCC) [110]

that models both document topics and word topics jointly. Where most probabilis-

tic topic models capture the correlation between words, few are able to capture the

correlation between topics. By doing so, one can decrease the word-topic cluster

down to an applicable subset of a document (paragraphs or words, for instance), then

model the overall topic of the document as a cluster of word-topics. This technique

may facilitate image semantic tagging using local topics as clues, feeding into image
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clustering.
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Figure 2.6: Latent Dirichlet Co-Clustering Model [110] Plate Diagram.

Figure 2.6 defines the plate diagram for the LDCC model, adding the S plate for

word-segment topics, assuming that the document-topic mixture φ is a mixture of

the word-topics θ [110].

2.5 Multimodal Fusion

Multimodal fusion research attempts to create models that represent multiple

data domains concurrently, such as images or text. Very little multimodal research

has taken place with latent topics [22]. A few areas have seen success in multimodal

fusion, such as work that ties video to audio. Hauptmann and Christel [53] found

that combining video with other data almost always improved retrieval performance,

while multimodal fusion also successfully identified scene changes [121] and story

segmentation [139] along with improvements using captions when available. Shafiei,
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et al. further extended this research by topically segmenting a document corpus by

paragraphs and sentences. Still others draw on a joint word-image modeling approach

[78] [7] [60] [13] [70] that lays the foundation for the research in this dissertation.

This section sets the final foundation for our data mining method. The hypothesis

is that both automated image annotation and latent topic extraction can be improved

using multimodal fusion, similar to video retrieval. We first cover one of the dominant

forms of image and text multimodal fusion: multimodal LDA. We then discuss some

of the other methods for using image context to assist with annotation. Finally, we

address a word balance problem that must be resolved prior to successfully using

image tags to improve latent topic extraction.

2.5.1 Multimodal LDA.

Images often provide valuable context towards document topics and, similarly, text

topics surrounding images help identify semantic labels for images. A system that can

successfully exploit this synergy may improve both CBIR and latent topic extraction.

Most data mining clustering research is focused on one particular domain, such as

solely on text or images. There is, however, a growing body of research interested

in drawing out latent variables from a corpus made up of both words and images.

Initial research into multimodal representations [7] in data mining used soft clustering

to arrange co-occuring text and image blobs into a hierarchical tree structure.

Blei and Jordan [13] tag regions of an image based on their mixture clustering. The

regions can be assigned topics relative to the word topics. Their Generalized Mixture

Latent Dirichlet Allocation (GM-LDA) model provides a multimodal approach to link

words and image regions under the same generative latent topics. In this model, it

is assumed images and captions are generated individually from the same document

corpus (see Figure 2.7(a)). The Correspondence LDA (Figure 2.7(b)) model further
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Figure 2.7: LDA Image Variant Plate Diagrams.

expands this concept, assuming regions produce captions. Since then, other models

have leveraged and modified this approach. This includes query logs, captions, and

surrounding text linked to image blobs [78] cross-media relevance models [60], news

articles [36], twitter topics [96] and life patterns using cell phone data [32].

Instead of using Gaussians to directly represent image blobs, Barnard, et al. [7],

uses k-means to cluster the blobs into discrete labels. They then apply Dirichlet

priors to both the word and image blob multinomial distribution. The words and

image regions are linked using discrete-translation. Image regions still generate word

annotations, but the multinomial distribution representing the blob labels provides

greater granularity than Gaussian-based topic distributions. This model is useful

for linking words to image blobs but grows in complexity as the number of words

potentially associated with each image blob grows. Incorporating the paragraphs of

text surrounding an image would greatly increase the complexity of this approach.

All these approaches assume semantically relevant information can be gained us-

ing the co-occurrence of words and specific image blobs or regions. Unfortunately,

this may not provide adequate precision for an effective generalized classifier. The

subject of most images typically lies in the center with a large surrounding region
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of background. Most discussion about the image focuses on the subject rather than

the background images, yet these regions would dominate most images. For instance,

text surrounding an image of a boat would rarely mention sky or water but would

typically talk about boats, naval strategy, cruise information, or similar topics. Im-

ages of beaches would also include significant portions of sky or water, yet would be

surrounded by very different topics.

2.6 Word Balance

Limiting context to that surrounding an image, then pruning based on relevance,

creates a new problem. Resulting tags are highly relevant since they relate directly

to an image, yet their low frequency means they have little impact on overall topic

extraction. One of the limitations with the Gibbs Sampling technique is the tendency

to become trapped at the mean of a data distribution. This happens when the variance

is small enough, especially when initial data points are chosen poorly. Often, it

requires either restarting the chain or running it for extended periods [138]. Words

with high frequency have a tendency to create distributions with high probability and

small variance, not only preventing a topic from isolating semantically interesting

words but drawing other words into it that may not belong due to the probabilistic

strength of the topic. Additionally, some models are sensitive to probabilistic islands

[138] due to high frequency, low standard deviation data clusters. During the Monte-

Carlo simulation, if these high frequency spikes are encountered early, they can result

in the model becoming “stuck”.

These pitfalls with Gibbs LDA only complicate image-generated tags. If two

images both produce ‘water’, yet one is about a recreational cruise in an advertisement

and the other a swamp in an environmental document, we want these to cluster

into separate topics. Additionally, accurate tags for an embedded image often carry
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higher relevance than a single word embedded elsewhere in the document. Clearly,

the low frequency of image-generated terms will have minimal impact on final topic

distribution relative to their importance.

2.6.1 Word Balance Solutions.

Raw document text provides poor material for clustering and typically must be

smoothed. Originally, LDA required not only cleaning up of some words, but changing

zeros to very small numbers to do parameter estimation [14]. Commonly-occuring

words, such as ‘the’, ‘is’, ‘at’, or ‘on’ will be represented by high frequencies within a

document corpus. One solution is to simply remove these stop words prior to model

formulation. Additionally, low frequency words do very little to help clustering or,

even worse, actually prevent effective clustering. In many cases, low frequency words,

sentences, or documents are removed prior to training the model. While common

stop-word lists exist, defining these words can be rather ad-hoc, given there is at

least
(
n
x

)
stop-word lists where n is the number of words and x is the number of stop

words [135]. Finding an appropriate subset can be challenging.

Another solution, defined by Jones, weighs terms based on collection frequency

[65]. Coined Term Frequency - Inverse Document Frequency (TF-IDF), it penalizes

words that appear in numerous documents, instead highlighting those that appear

often in only a few documents.

tf − idf(t, d) = tf(t, d) ∗ idf(t) (2.19)

idf(t) = log
|D|

|{d : t ∈ d}|
(2.20)

One could also eliminate stop words, then use TF-IDF to further refine the re-
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maining words. Comparison testing demonstrated some success using this technique

with Self-Organizing Map clustering. However, TF-IDF would preclude Gibbs Sam-

pling from being effective since Gibbs Sampling relies on discrete frequency counts.

There are, however, other techniques that allow for normalized frequency or TF-IDF

in latent topic clustering. The Spherical Admixture Model (SAM) [97] is a Bayesian

topic model that represents documents on a high-dimensional spherical manifold and

can even assign negative weights to terms. While it did perform well with their test

set, it is more complex and requires extra calculations to extract topics.

Recent research [124] indicates that fixing symmetrical priors for document-topic

probability calculations prevents LDA from handling stop-words effectively. They

have demonstrated that, by computing an asymmetric prior from the data, one can

get stop-words to cluster into a few topics. This leaves the remaining topics full

of semantically-significant grouping of words. Comparison testing with asymmetric

priors using the Latent Dirichlet SEGmentation (LDSEG) [109] indicates significantly

increased algorithmic complexity involved in recalculating priors.

Another method involves stemming the words to their root form. Originally de-

fined in 1974 [25], a number of variants have been produced since that time [59].

While it does decrease the dimensionality of the documents, stemming has had some

indication [51] that it performs poorly in retrieval tasks.

Frequently occuring words could be distributed in the form of n-grams. This is

based on the idea that the words ‘white house’ may have vastly different contexts

in a political versus real estate article. Merely storing the words ‘white’ and ‘house’

may miss valuable context that can be used to help cluster documents. The basic

form of an n-gram consists of a bigram relationship between two adjacent words. By

concatenating words, bigrams, trigrams or higher order n-grams can be produced.

One user of the n-gram model [131] claims it produces reports that are more inter-
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pretable than the standard unigram model. This has the added advantage that it

decreases word frequency for those commonly-occurring words since they would be

paired with another word that may lend higher significance to the pair (or triplet).

It does, however, increase the complexity of the model and in comparison testing,

produced worse results over unigram models.

Another potential solution [135] involves LDA term weighting. Instead of using

word token frequency as in Equation 2.18, they use a weight for that word. While the

actual term weight used could be based on any number of weights, they use point-

wise mutual information between the term and the document, specified in Equation

2.21. This minimizes the impact of high frequency words that are spread out over a

number of documents. While promising, this technique does not help to emphasize

low frequency image-generated words over low frequency standard words.

m(xi, d) = −log2
p(xi|d)

p(xi)
(2.21)

Blei, et al. modified LDA slightly [12] to incorporate a supervised response vari-

able into the generative model. For instance, a list of movie reviews could develop

topics based on movie genre or whether the review indicated the movie was good

or bad. While not directly applicable, a semi-supervised approach could be appli-

cable, emphasizing the image text results to determine the latent topics within the

document, skewed towards image-word / document-word matches.

2.7 Iterative Automated Image Annotation Improvements

A number of papers demonstrate improvements can be made by utilizing outside

information. Jeon, et al. [60] used the Cross-Media Relevance Model (CMRM) to

improve image annotation by linking image blobs with words. This was expanded

using Random Walks [125] and a Markov chain model [126] coupled with the CMRM
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to iteratively improve image annotations using captions. Experiments using CMRM

tend to rely on a set of manually annotated images to train a system in identifying

unknown images, thus would have difficulty extracting annotations where some words

may be irrelevant to the image itself. Additionally, the trained model does not take

into account local context when assigning annotations. Likewise, the nearest neighbor

approach [82] also trains on words without local context. Feng and Lapata [36] used

the continuous relevance image annotation model, coupled with LDA trained on words

in news articles to improve automated image annotation.

2.8 Evaluation

A number of methods exist for evaluating the efficacy of text-based clustering. A

common technique is to use precision and recall to measure the ability of a system

to return relevant documents to a query. Recall measures the number of relevant

documents retrieved for a query out of all documents in the corpus (Equation 2.23),

while precision measures the number of relevant documents returned out of those re-

trieved (Equation 2.22). Since precision and recall by themselves are prone to return

good results for bad performance (recall is 100% if all documents are retrieved for a

query), the F-measure uses a ratio of recall and precision (Equation 2.24). Assuming

one cluster per class, F-measure provides an effective estimate of performance. How-

ever, if the number of clusters and classes is significantly different, other measures are

needed [137].

precision =
|Relevant ∩Retrieved|

|Retrieved|
(2.22)

recall =
|Relevant ∩Retrieved|

|Relevant|
(2.23)
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F = 2 ∗ Precision ∗Recall
β2 ∗ precision+ recall

(2.24)

While Normalized Mutual Information (NMI) may provide a good measure of the

model’s clustering, F-measure demonstrates how well each model generalizes to new

data. Since the overarching goal of this research is a generalized, robust classifier,

F-measure is primarily used while precision and recall are given to provide additional

information.

2.9 Large Corpus Data Mining

Part II investigates the efficacy of latent topic models on real world data in a

digital forensics context. Therefore, a discussion about topical literature would not

be complete without discussing the field of research in large corpus search or digi-

tal forensics. Traditional digital investigations using keyword or regular expression

searches is approaching the cognitive limitations of a human analyst [9]. Proper

keyword selection can be instrumental in the success of an investigation, requiring

experience and potentially a bit of luck. Since two humans will select the same word

to describe an object less than 20% of the time [39], a target document may have

a relatively low chance of being selected. With data generated by multiple users,

such as a network server or disks retrieved from a company, keyword searches must

either include a variety of potential keywords and increase the false positive rate or

constrain their keywords, decreasing the recall rate.

One solution to the keyword problem is to create a keyword list in an intelligent

manner that, on average, will produce better results. Du, et al. [30] attempted

this using WordNet and Latent Semantic Indexing to prune high-noise keywords.

Probabilistic Latent Semantic Analysis (pLSA) along with several other clustering

techniques can be used to identify semantically or topically similar documents [5].
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Many of these techniques have been used in forensics analysis, such as the work by

Beebe et al. [10] that successfully clustered query results using self-organizing maps.

Most of the techniques used in this field, however, test against small, artificial, or

single disk test data that only partially represents a real-world disk. Additionally,

techniques for analyzing data are designed and tested against either small data sets

or large, and fail when presented with the opposite data [41].

2.10 Test Data

Testing algorithms that use both text and images require a data set containing

documents with sufficient embedded images. Truth information is useful since it

provides the ability to measure algorithmic performance using precision and recall.

The U.S. Patent and Trademark Office (USPTO) offers a large corpus of patents

grouped by category [2]. Each file is in XML format and many include embedded

images. Initial testing with the USPTO database found the images difficult for the

automated image annotation algorithm to interpret. This was largely because most

images were diagrams or close-ups of a mechanical part. The GovDocs corpus [40]

provides over one million files from various government entities. Many have embedded

images, though like the patent documents, they tend to be engineering diagrams, flow

charts, or close-ups of machines. In addition, it lacks category information.

The INitiative for the Evaluation of XML Retrieval (INEX) 2007 Wikipedia data

set [28] offers a large corpus of Wikipedia documents manually labeled with over-

lapping categories. The English version includes over 600,000 documents on a wide

variety of topics. Documents tend to be focused and images tend to be highly relevant

to the document topic. This makes it ideal for testing algorithms using a clean set of

data, but does not represent the noisy data a forensics analyst might encounter.

The forensics analyst usually deals with large amounts of unstructured data. This
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may include a single hard drive, or may contain hard drives, cameras, smart phones,

or other storage devices. Testing large, cross-drive analysis against real-world digital

forensics data is rarely possible since mixing evidence between cases is problematic

[41]. To help solve this problem, Garfinkel developed a corpus of hard drives purchased

off the open market with a variety of real user data. He used them to test a Cross-Drive

Analysis technique [41] using lexigraphic data to identify real-world drives heavy with

financial information, e-mails, or other information with defined formats. It provides

a highly realistic set of data to assess algorithms using multiple data domains.

2.11 Summary

This chapter presented the background research pertinent to the methods used in

this dissertation. It first discussed automated image annotation techniques. Related

techniques, such as ensemble directors and image segmentation techniques. It then

discussed text mining and comparison techniques that provide the foundation for the

SWLDA model discussed in Chapter V. This includes discussions on multimodal la-

tent topic extraction, along with the complications of some of those methods. Finally,

large corpus search is reviewed along with potential solutions for improving document

search and retrieval accuracy.
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III. Part I: System Overview

Data mining and digital forensics for multimedia data is challenging, partly due

to a lack of structure within the data content and partly a result of limited research

within multimodal data mining. Fusing data mining techniques may produce better

accuracy for user queries than individual methods. While a comprehensive data

mining fusion tool would bring together audio, video, still images and text, this

research limits its scope to still images and text. By fusing methods together between

these two digital domains, improved accuracy may result in addition to a more robust

search capability.

This chapter provides the details of the automated image annotation and latent

topic iterative model. It discusses the overall model, assumptions, and justifications.

The three stages of the model are introduced and are further detailed in Chapters IV

through VI along with their testing and results. Chapter VII assesses what aspects

of this model, if any, can be run on a set of real-user hard drives.

Figure 3.8 diagrams the full model process. The inputs to the system include a doc-

ument corpus with embedded images. The document parser extracts text and image

information, removing stop-words and passing the individual words to the Stage I au-

tomated image annotation algorithm. In Stage I, the model attempts to leverage the

text surrounding an embedded image as context to improve basic image annotation.

The proposed model is demonstrated to provide improved annotation when compared

against the Automated Linguistic Indexing of Pictures in Real Time (ALIPR) im-

age annotation system [73]. In Stage II, those image tags are used as super-words

in the SWLDA model to improve latent topic extraction from the document corpus.

The posterior probabilities within the SWLDA model facilitate document retrieval

and topical browsing. In Stage III, these posterior probabilities help prune topically-

insignificant words from the image annotation and the surviving are words used to
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Figure 3.8: Automated Image Annotation and Latent Topic Iterative Model.

expand the breadth using WordNet hypernyms and hyponyms. This can be fed back

into Stage II to refine latent topic extraction and image annotation further. Part II
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of this research evaluates the effectiveness of generative topic models on a real world

non-curated data set.

3.1 Document Processing

The documents within the Wikipedia XML corpus are read using the libtinyxml

library in Java on a Ubuntu linux machine. The raw text is parsed and loaded into

a MySQL database and the text location recorded. Images are placed in a directory

on the disk with a database entry providing the location of the file. All images are

loaded using the OpenCV library. All subsequent processing of images and text are

conducted on the database.
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IV. Stage I: Automated Image Annotation

The context-driven image processing approach draws on the advantages of both

generalized and specialized classifiers in a novel way using contextual information sur-

rounding an image. It automatically assigns image annotations to embedded images

using local context, WordNet, and signatures generated from ImageNet. This chapter

describes stage I of the Automated Image Annotation and Latent Topic model. It first

discusses the methodology and experimental design, then summarizes and analyzes

the results.

4.1 Methodology and Experimental Design

Stage I leverages WordNet synset information from local text context to prompt an

ensemble director that selects the best classifier based on intrinsic knowledge of that

synset. ImageNet images, organized by synset, then provide a new capability to build

signatures representative of that synset and compare them against a query image.

ImageNet includes over 14 million images embedded into a hierarchical structure

based on WordNet with over 21,000 synsets that can be used for classification. Many

of these images include bounding boxes and human annotated attributes that provide

a valuable resource for image tagging research. While Leong and Mihalcea [72] used

image features from ImageNet to measure word relatedness between synsets based on

their image similarity, we are not aware of any similar use of ImageNet to compare

against unknown images within an ensemble director.

The method, shown in Figure 4.1, can be applied to any document corpus with

images surrounded by text. The document structure is parsed and the image caption,

paragraph before, and paragraph after the image extracted, as indicated by the Doc-

uments block in the upper left of the figure. Stop-words are removed by the “Text
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Figure 4.1: Automated Image Annotation and Latent Topic Iterative Model.

Pre-processing” step and a list of noun synsets are generated for each remaining word.

ImageNet has a large number of synsets in its hierarchy; however, not all have images
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associated with them so not all synsets can be tested. Additionally, only nouns have

associated images even though it may be relevant in some cases to tag images with

adjectives or verbs. For this reason, not every word in the surrounding paragraphs

can be rank ordered.

The “Ensemble Director” first analyzes the image features using a histogram to

detect if the image is a graph or line art. These images are skipped, though future

research could incorporate Optical Character Recognition (OCR) to extract infor-

mation. The synset of the image is then extracted and, if its root synset is person

related, then the image is sent to the face detector module (see Section 4.3.3). If

a face is detected, that word is marked as potentially applicable. If the synset falls

under any other root synset, the image is segmented using Efficient Graph-Based

Image Segmentation [35] in the “Feature Extraction” step and the mean vectors cal-

culated. A normalized histogram is generated from these mean vectors, both for the

unknown image and a subset of images from the ImageNet synset. The histograms

are compared using Earth Mover’s Distance (EMD) (see Section 4.3.4) in the “Sig-

nature Comparison” step and the words rank-ordered from least EMD to greatest.

The resulting words can then be used to tag the images based on a calculated EMD

threshold or fixed number of tags. There currently is no way to distinguish between

words related to people–either faces are detected and all people words are accepted,

or no faces are detected and the people words are discarded.

4.2 Text Preprocessing

Raw text includes a number of frequently occuring words, such as ‘a’, ‘and’ and

‘it’ that do not provide significant information to the algorithms in this dissertation.

This section discusses the problems considered when designing the methods in this

chapter, as well as the specific text pre-processing steps necessary to produce good
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results.

Image captions and surrounding text can be used to help refine image tagging.

Unfortunately, words by themselves are still ambiguous without their surrounding

context. For example, use of the word ‘plane’, meaning an aircraft, or ‘plane’, mean-

ing a tool for smoothing wood can be identified by how it fits into the paragraph.

This work hypothesizes that significant differences exist in the image features of air-

craft and tool ‘planes’ that permit rank-ordering tags for an unknown image without

relying on paragraph context. Additionally, the text surrounding an image will help

constrain classifier category overlap and allow highly-relevant words to distinguish

themselves. Nouns tend to be more descriptive of images while adjectives, verbs, and

even adverbs may contribute to effective image annotation. For example, ‘white’ and

‘house’ mean something different than ‘white house’. While digrams and trigrams

provide opportunity to expand this research and may improve results, we constrain

complexity by limiting the research to single word instances.

By combining text, object recognition methods, and statistical pixel analysis, con-

text clues can be leveraged to develop a generalized image annotator. The challenge is

in limiting the search space and categorical overlap. The text surrounding an image

may provide contextual prompting, allowing for careful selection of appropriately-

specialized classifiers. Unfortunately, specific concepts are often represented by a

number of words and each word may have several meanings or synsets. Accurately

mapping to the intended meaning requires complex lexical analysis or a search across

each possible meaning. WordNet [34] is a lexical database that groups words into dis-

tinct concepts called synsets. Additionally, it includes a hierarchical hypernym/hy-

ponym relationship between more general and specific forms of a word. This allows

the words surrounding an image to provide a robust contextual prompting based on

meaning instead of text. To select the most applicable meaning based on the sur-

52



rounding words, Popescu, et al. [95] utilize the WordNet hierarchy to group images

of placental animals within their hypernym/hyponym synsets as chosen by the user.

They compared pixel statistics of known images within the synset and unknowns to

accurately select from sets of unlabeled images. As expected, the more specific terms

(e.g. Brown Swiss cow) perform better at finding similar images than more gener-

alized terms (e.g. Bovine). Google research [79] [64] has also leveraged contextual

information via hyperlinks and user selection along with image features to aid image

annotation.

Word distance from the image is an additional concern. This research hypothesizes

that the closer a word is to the image, the more likely it is to be pertinent. For the

proof of concept, we simply use the image caption and the paragraph before and after

the image. However, results may be improved by a smarter extraction algorithm. A

distance threshold may account for the disparity in paragraph size while intelligent

parsing could look for references, e.g. ‘Figure 1’, and extract the text surrounding

that reference. The goal, however, is to limit word extraction to maximize the chance

of extracting pertinent words rather than all words, which may be less relevant.

Words are also limited to nouns with available ImageNet synsets. Some synsets

only have a handful of images associated with them and are also ignored. During

initial experimentation, synsets with fewer than ten images performed poorly so that

number was chosen as the minimum threshold. Stemming was deemed not necessary

since WordNet already recognizes alternate forms of certain words.

4.3 Ensemble Director

An ensemble director is used to gain higher accuracy by using the synset hierarchy

to drive the decision tree, as outlined in [91]. The ensemble director detects graphs

or clip-art, people, and all other images, handling each differently. While ImageNet
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does contain a wide variety of images associated with people, it is unlikely an image

classifier will be able to distinguish between an image of a medical doctor and one of a

nurse. The ensemble classifier overcomes this limitation, and is outlined in Algorithm

3.

Detecting graphs, faces, and similarity with other images is challenging given that

images consist of pixel values without obvious structure. The techniques used by the

ensemble classifier require the pixel information be summarized and attributes, such

as frequency, must be extracted. This section first discusses the methods used to

select image features for the ensemble director. It then discusses the modules used to

identify graphs, faces, and image similarities.

Algorithm 3 Ensemble Director Algorithm

Input: Image, synset
Output: Rank ordered super-words
if Image is a graph then

Discard Image and Exit
end if
for all Synset of words surrounding the image do

if synset is people-related then
if Faces are detected in the image then

Add the synset as a super-word
else

Discard Super-Word
end if

else
Compare image against synset image signatures and calculate Earth Mover’s
Distance

end if
end for
Convert image color space to a CIE LAB histogram
Identify the three largest histogram spikes
Calculate the standard deviation around the spikes
Return top three synsets ranked by Earth Mover’s Distance or People-based words
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(a) Original Image (b) LAB Color Space. (c) LUV Color Space. (d) HSV Color Space.

Figure 4.2: Color Space Comparison Using k-means Pixel Clustering.

4.3.1 Image Comparison Feature Selection.

This section describes the development of the feature extraction, summarization,

and signature comparison techniques that are used in the face detection, graph de-

tection, and ImageNet-based signature comparison modules. Features were selected

using a mixture of comparison testing and intuitive analysis. A number of methods

were tested for their ability to cluster images and extract accurate similarity mea-

sures. These include color, frequency, shape, size, and location. The results of the

feature selection testing is described in this section.

4.3.1.1 Color Space.

As discussed in Section 2.1.1.1, each color space has its benefits. Three of the

most prominent include the CIE LUV (good for glowing colors), CIE LAB (good for

reflexive colors), and the HSV (accurately represents painting colors). The images

from left to right are: the original, the CIE LAB color space, CIE LUV, and finally

HSV.

Figure 4.2(a) through 4.2(d) illustrate the differences between the color spaces. A
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k-means average was taken for the pixel values in each color space, then the pixels

changed to the mean of each cluster. The CIE-LAB color space isolates the horse

best, while the CIE-LUV color space image breaks apart the horse into dark and light

regions. The HSV color space breaks the horse into multiple blobs that do a poor job

of representing the actual horse. Based on widespread use in the literature [19] [74]

[36] [62] and success in comparison testing, the CIE-LAB color space is used for this

research.

Each image is loaded from its file format into the RGB color space where it is

then converted to the applicable space. The color vector (e.g. C = [L,A,B]) can

then be summarized using either k-means or expectation-maximization, then used in

the image clustering algorithm.

4.3.1.2 Frequency.

Frequency, as illustrated by the Daubechies wavelet decomposition of the bus in

Figure 4.3, has demonstrated improved automated image annotation during com-

parison testing. The wavelet is computed over the CIE-LAB color space. Previous

experimentation demonstrated that the L dimension produced far better results than

either the A or B spectral dimensions. Adding either of these wavelets to those pro-

duced by the L dimension tends to generate less precise clustering than just the L

dimension alone.

As with color, frequency can be summarized into representative means and used to

cluster images. Reducing each image into two filter iterations with all three frequency

bands produces better clustering than color alone. Utilizing only the first iteration

of the filter tends to produce a poor clustering signature, while using a signature

made of the first two iterations demonstrates a much higher fitness. Averaging the

horizontal, vertical, and diagonal frequencies together for each iteration improved
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Figure 4.3: Frequency Wavelets - Bus Image.

clustering further during comparison testing.

The feature vector used in the image processing algorithms consisted of the three

dimensions of the LAB color space. It also included the average frequency between

the horizontal, vertical and diagonal wavelets for the first and second application of

the wavelet filter.

4.3.2 Graph Detection.

While future versions of this ensemble director may handle clip-art and graphs, the

current version does not. It uses a technique adapted from [95] to detect graphs using
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standard deviation around the largest lightness histogram peak. That method, how-

ever, resulted in a number of false positives where images had significant amounts of

white or black in them. Hence, it was modified to include the average standard devia-

tion of the top three histogram peaks. This prevented a single color from dominating

and greatly improved graph detection. Graphs are then discarded as untaggable. The

pseudo-code is defined in Algorithm 4.

Algorithm 4 Graph Detection Algorithm

Input: Image, max ratio
Output: boolean value indicating whether it is a graph
Convert CIE-LAB image pixels into a color space histogram using 100 buckets per
channel
Identify the three largest histogram spikes (s1, s2 and s3)
Calculate the standard deviation around the spikes up to three buckets away
for all spike pairs si and sj do

if si/sj < max ratio then
Eliminate si

end if
end for
if (The spike magnitude / largest spike magnitude) > threshold of 0.2 then

Add the spike standard deviation to the average standard deviation
end if
if The average standard deviation is greater than 0.3 then

Return true.
else

Return false
end if

4.3.3 People-Based Synsets.

Determining if people exist within an image is complex, with a number of different

methods available [66] [122] [123] [108] [105]. Comparison testing demonstrated that

looking for skin colors is found to produce excessive false positives. Face detection, on

the other hand, provides more accurate results. People detection utilizes a boosted

cascade of Haar-like features [123] from the OpenCV 2.4.6 pre-trained alternate frontal
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face detector. This accurately detects faces when they are dominantly displayed in

the image, though has reduced accuracy with side profiles and small images. This is

likely acceptable since, when people do not dominate an image, they are less likely

to be the focus of an image.

4.3.4 Remaining Synsets.

ImageNet provides an assortment of images for select synsets that consist of images

from all sub-categories. For instance, the synset for ‘dog’ contains a wide assortment

of dogs while ‘Great Dane’ contains only that particular breed. This helps when

generating a signature since the signature for ‘dog’ will be broader than the narrower

‘Great Dane’ subset.

Before a signature is generated, the features are extracted from the image and

summarized similar to the method outlined in Section 4.3.1. Once generated, the

features are reduced to representative samples to better highlight the defining traits

of an image set. This is accomplished through mean vectoring of the features within a

region. The Efficient Graph-Based Segmentation [35] produced image regions whose

vector means represent features common to all images of a particular synset. Efficient

Graph-Based Segmentation utilizes a ratio of region size to threshold node merging

based on edge gradient. Unfortunately, this requires parameter tuning in relationship

to image sizes. In an image with numerous pixels, the threshold shrinks as pixel size

increases, resulting in a high number of regions. Because of this, all images are resized

to a width of 400 pixels while maintaining the original aspect ratio.

By calculating the region mean vectors for each image, a histogram of images

are assigned to a particular synset. Ideally, this histogram includes a representation

of those synset elements that occur frequently versus another synset. Comparing

the query image to the synset signature must account for different primary subject
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Table 4.1: Image Dimensions

L Lightness component of CIE-LAB color space
a ‘a’ frequency of CIE-LAB color space
b ‘b’ frequency of CIE-LAB color space
DB1 AVG Daubechies Horizontal/Vertical/Diagonal avg high frequency
DB2 AVG Daubechies Horizontal/Vertical/Diagonal avg medium frequency

backgrounds or sizes. Any similarity measure must detect general patterns while

not being confused by the noise within the domain. The EMD provides a robust

comparison algorithm that has performed well in related image retrieval testing [101].

It represents the amount and distance of ‘earth’ or histogram area that must be moved

to convert one histogram to the other. This provides a numerical quantification of

differences between an image’s histogram and a synset’s representative histogram.

The implementation of the EMD includes several preprocessing steps. First, to

minimize noise impact within the synset histogram, all histogram buckets with fewer

mean vectors than the threshold are dropped. This highlights frequently occurring

elements of that synset while minimizing background regions that do not appear

consistently throughout the images. Second, comparison testing determined that

using too many images to represent a synset averaged out key traits. Additionally,

too few histogram buckets lost data while too many created a sparse signature. An

image count of between ten and forty appears to produce the most accurate results,

while synsets with less than ten images are ignored. A histogram bucket size of 26

best balances detail with sparsity.

4.3.5 Image Processing Modules.

The final modules use Efficient Graph-Based Segmentation with Mean Thresh-

olding to summarize the image features into mean vectors. Images are normalized

to a width of 400 pixels while maintaining aspect ratios. The vectors were used to

populate a histogram with 26 buckets per dimension using the three LAB color space
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Table 4.2: Wikipedia Test Categories.

Category Documents Images Pruned

Images

Skyscrapers 258 83 75

Aircraft 1877 501 441

Vegetables 324 62 56

Armored Fighting Vehicles 143 48 47

Dogs 813 231 215

WWII Ships 788 26 22

Flowers 164 37 34

Elephants 258 19 18

Sailboats 132 24 23

Mountains 2252 305 260

channels and the average Daubechies wavelet between horizontal, vertical and diago-

nal wavelets. The first and second iteration averages were each used. The dimensions

are given in Table 4.1.

4.4 Evaluation

Testing of the algorithm used the 2007 INitiative for the Evaluation of XML Re-

trieval (INEX) dataset [28]. The INEX dataset includes more than 600,000 documents

from Wikipedia, many with embedded captioned images. Each document is labeled

with overlapping topic categories, providing a robust mechanism for selecting a range

of document topics. In addition, Wikipedia articles tend to be topically related to

the images embedded within, helping to highlight poor results as algorithmic prob-

lems rather than inconsistent data. Other real world data repositories may include

far noisier data and not perform as well. Some of the images were too small while

some looked like graphs. The number that were actually annotated is listed under

the Pruned Images column.
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The results are compared with Automated Linguistic Indexing of Pictures in Real

Time (ALIPR) [73] due to its availability and widespread acceptance in the research

community. Each image tested using this dissertation’s algorithm was also sent to

ALIPR and tagged. The top fifteen words produced by ALIPR were then sent to

a workforce of human analysts on the Amazon Mechanical Turk (AMT) website for

scoring. Unfortunately, ALIPR does not provide an indication of the synset for each

word, so definitions were not provided to workers.

The human analysts on AMT graded the image annotations on a scale of one to

five, where ‘five’ indicates the word describes the image completely and ‘one’ indicates

no correlation between the word and image. Each word annotation included the

definition from the WordNet synset to remove ambiguity on the intended word form

or synset. Five AMT workers were used to score each word, with the average score

considered as the standard and disagreement represented by a standard deviation

value.

This test compared two things. First, the automated word ranking should match

as closely as possible to human rankings. In this research, this is limited only to those

words both algorithms extracted from the document and were available in ImageNet.

Second, the words should be specific enough to be useful descriptions. Describing a

boat as a ‘thing’ may be highly applicable but too general to be useful.

Performance is measured as the average Amazon Mechanical Turk score from the

top five words. In addition, specificity is used to determine how specific the top five

words are. Up until recently, lexical analysis research has used the Term Frequency -

Inverse Document Frequency (TF-IDF) to help determine specificity. Recent research

[102] uses a mixture of WordNet attributes to define the ‘importance’ of a word, given

its generality or specificity. They utilize a function of term weighting based on the

number of senses in a word, the number of synonyms, the hypernym level, and the
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number of children (hyponyms/troponyms). Since specific synset information is not

available for ALIPR, this research utilizes an average calculation to determine best

and worst-case specificity levels. To simplify this calculation, only the hypernym level

is considered.

4.5 Results and Discussion

The Stage I results were calculated for each image and are listed in Table 4.3. The

data provides the overall improvement of the context-driven algorithm over ALIPR.

Since ALIPR did not provide the synonymous set for a particular word, three val-

ues must be calculated to estimate the actual value. First, the minimum specificity

takes the least specific synset for each word and produces the worst-case scenario.

The second value indicates the average of all possible synset specificity values. Fi-

nally, the third calculates the greatest possible specificity, or best possible case. As

our algorithm provides synset information, this calculation was unnecessary for the

context-driven approach, so those fields in Table 4.3 are marked as N/A.

Table 4.3: Method Test Results Comparison.

Method Relevancy Min Avg Max
Spec. Spec. Spec.

Context-Driven 1.98 N/A 9.09 N/A
ALIPR 1.62 5.03 6.43 7.85

The data in Table 4.4 divides this performance into the various document cate-

gories. The third column provides the average relevance measure for each category

while the fourth column indicates specificity. Some categories performed better than

others. For example, documents about elephants had images that poorly represented

the topic, such as images in the dark, covered in tapestries or lights, or consist-

ing of charcoal drawings. The human confusion is evident as this category had the

second highest standard deviations among AMT worker scores. Vegetables had the
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largest standard deviation, demonstrating the difficulty that humans had in deter-

mining what kind of label a leafy plant or variety of squash receives. While the

elephants were hard for the algorithm to annotate, it had fewer problems labeling

vegetables, likely due to the consistent color and texture among common varieties.

The skyscraper category scored low in specificity since it tended to use very general-

ized words such as tower, structure, and building. Images of ‘WWII Ships’ tended to

be grainy black and white, taken from a distance or with high background noise.

Table 4.4: Relevancy and Specificity Scores by Category.

INEX Image Avg Avg
Category Count Relev. Spec.
Elephants 18 1.75 9.15
Mountains 260 1.76 8.44
Aircraft 441 2.07 9.59
Dogs 215 2.00 10.10
Skyscrapers 75 2.00 8.75
Sailboats 23 2.07 8.67
Armored Vehicles 47 2.00 9.61
WWII Ships 22 1.82 8.93
Vegetables 56 2.16 9.02
Flowers 34 2.11 9.25

Table 4.5 provides an example of the context-driven algorithm performance on

the image of a B-1B bomber aircraft. Words drawn from the area surrounding the

image help populate the table and the algorithm rank orders them based on their

image features. The first column provides the ordered list of words generated by

this context-driven algorithm and the second column has a very brief definition. The

definitions had to be abbreviated due to space limitations, but they illustrate the

difference between two variants of a word. The ordered top words generated by the

ALIPR algorithm are in the third column. As expected, bomber scored near the top

while completely unrelated words, such as ‘ocean’ and ‘range’ were pushed to the

bottom. The word ‘cockpit’ appeared high on the list, though no cockpit was directly
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Table 4.5: Sample Image Annotation Results - Aircraft Image.

Word Definition ALIPR
(in order) words
cockpit Area pilot sits man-made
bomber Aircraft that drops bombs indoor
panel Electrical device photo
control Mechanism old
throttle Controls throttle valve people
throttle Regulates fuel to engine decoration
engine Motor decoy
range Series of mountains snow
ocean Large body of water ice
limited Public transportation winter

visible, likely due to color and texture similarities between the aircraft image and an

actual cockpit.

Table 4.6 provides results from one of the more challenging images within the

‘dog’ category. The algorithm appears to match color and texture features common

to dogs, humans, and a thoroughfare (street) from the ImageNet database and rank-

ordered ‘dog’ and ‘human’ as one of the highest. The alternative definition for the

word ‘dog’, meaning metal supports for logs in a fireplace, was ranked low due to

different image features.

4.6 Summary

This chapter provided evidence supporting the hypothesis that local context can

improve automated image annotation using simple image comparison techniques. An

ensemble director uses the text surrounding an image to select an appropriate image
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Table 4.6: Sample Image Annotation Results - Dog Image.

Word Definition ALIPR
(in order) words
dog Domestic dog people
human family Hominidae man-made
street Thoroughfare sport
sign A public display car
street Thoroughfare (variant 2) cloth
control Operates a machine plane
sign Advertising board guard
retriever Dog variant parade
people Group of humans sky
blind A protective covering race
dog Supports for fireplace logs motorcycle

comparison algorithm. The product of the ensemble director is a rank-ordered list

of possible word annotations. These annotations were demonstrated to have higher

average relevancy and specificity than ALIPR, a popular generalized image annotation

algorithm. The results from Stage I are used to improve automated topic extraction

in Stage II, described in the next chapter.

66



V. Stage II: Super-Word Latent Dirichlet Allocation

Stage II tests the hypothesis that high-relevance super-words produced by auto-

mated image annotation will improve latent topic model parameter estimation. This,

in turn, results in better topic prediction for unknown documents when compared

to existing latent topic models. To test this hypothesis, image annotations produced

by Stage I are used as super-words to estimate hidden parameters of a new latent

topic model called the Super-Word Latent Dirichlet Allocation (SWLDA) algorithm.

This chapter first discusses the model design and methodology, then describes the

experiments. Finally, it describes and analyzes the results.

5.1 Methodology and Experimental Design

Latent Dirichlet Allocation (LDA) is a generative model that assumes documents

and topics are generated from a model with hidden parameters (see Appendix B for

an intuitive description). These documents and topics then generate the words of

a document. If the model parameters are known, it is possible to draw inferences

about unknown data. For instance, if one has a new document containing words and

hidden topics that was assumed generated from the model, then the probabilities for

the document topic can be assumed. Likewise, if the topic is known, a list can be

generated of the most likely words for that document.

Unfortunately, the model parameters and topics are rarely known a-priori. Docu-

ments and words exist and can be used to estimate model parameters using various

approximation techniques [14] [48]. Many documents contain both words and embed-

ded images, yet LDA only estimates model parameters for the text, ignoring images

that may be highly relevant. Some algorithms have attempted to draw in image

blobs [13] [78], but only test the relevancy of words linked to blobs, not whether

67



blobs improve model estimation. Rather than using blobs in their raw image form,

the SWLDA model proposed in this chapter first estimates word annotations for im-

ages, then uses those annotations as super-words to improve the model’s ability to

draw inferences on unknown data. Image annotations from Stage I are used to pop-

ulate a set of super-words S over another set of words W without high algorithmic

complexity or excess destruction of data.

The SWLDA model assumes two subset vocabularies W and S drawn from a

common vocabulary V , where W ∩ V = W and S ∩ V = S, but W 6= S. For

the purposes of consistent notation, S typically would have a smaller size than W ,

but would contain words of higher relevance to the topic model. Each super-word is

generated by documents and latent topics, similar to standard LDA.

Each word in the set S has greater topical significance than the set W but may not

have as high a frequency. Due to their higher topical significance, we call the words

in set S super-words over the regular words in set W . Like in standard LDA, each

super-word is generated by documents and latent topics. While this model is designed

and tested with a document corpus in mind, it should work for any generative entity

with elements of stronger co-occurrence.

The plate diagram in Figure 5.1 is derived from the Bayes formula given in Equa-

tion 5.1. The SWLDA model is assumed to generate words, latent topics, and doc-

uments, similar to standard LDA. In this case, documents and topics also generate

super-words with the same ‘bag of words’ assumption. Variables w and s represent the

observedN words and S super-words generated by the model. These words and super-

words are generated according to the multinomial probabilities φ and τ respectively.

The multinomial parameters are themselves generated by Dirichlet distributions with

priors β for words and η for super-words. Document topic probabilities z are gener-

ated by the multinomial distribution θ and those priors generated via the Dirichlet
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Figure 5.1: Super-Word Latent Dirichlet Allocation Plate Diagram.

distribution with priors α. Word w and super-word s generation are influenced by

the document-topic probabilities.

p(z, w, s, θ, φ, τ ;α, β, η) =
K∏
k=1

p(φk; β)p(τk; η)
M∏
m=1

p(θm;α)(
Nm∏
n=1

p(zm,n|θm)p(wn|φk)×
Sm∏
i=1

p(zm,Nm+i|θm)p(si|τk)

)
(5.1)

Since only the words and super-words are known, the multinomial parameters θ,

φ, and τ must be estimated using the known data. The goal is to solve for the un-

knowns using Equation 5.1. This cannot be accomplished directly but must rely on

approximation techniques. Gibbs sampling offers a solution using a Markov Chain

Monte-Carlo (MCMC) to iteratively approach the true model parameters. This re-
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quires a sampling formula to determine word and super-word topic assignment similar

to the standard LDA Gibbs sampling formula defined in 2.18. Starting with Equation

5.1, we aim to isolate a proportional equivalent with respect to changes in topic, or

k.

p(z, w, s, θ, φ, τ ;α, β, η) =

∫ ∫ ∫
p(z, w, s, θ, φ, τ ;α, β, η)dθdφdτ (5.2)

The integral of the probability for the support of Equation 5.1 is given by 5.2.

Conditional probabilities are considered independent of all non-descendants given

their parents, so the integrals can be isolated with respect to θ, φ and τ . Normalizing

constants are assumed in the resulting Gibbs sampling equation but not shown. Con-

stants are removed and proportionality maintained with respect to a change in the

topic k, resulting in Equation 5.3 (proof demonstrated in Appendix A). The Gibbs

sampling proportional probability is based on the selected topic k, document d, and

word e. The term f is a boolean term indicating either a word (γw) or a super-word

(γs). The term ck,d,e,f represents the word count of the word indexed by k, d, e, and

f . Likewise, zd,e,f represents the topic assignment at that particular word (1...K).

Probabilities must be normalized.

p(zd,e|z−(d,e),w, s, α, β, η) ∝



td,e ∈ W :
(c
−(d,e,γw)
zd,e,d,•,• + αzd,e)× (c

−(d,e,γw)
zd,e,•,wd,e,γw + βwd,e)

(c
−(d,e,γw)
zd,e,•,•,γw + V β)

×
(czd,e,•,wd,e,γs + ηwd,e − 1)

(czd,e,•,•,γs + V η)− 1

td,e ∈ S :
(c
−(d,e,γs)
zd,e,d,•,• + αzd,e)× (c

−(d,e,γs)
zd,e,•,sd,e,γs + ηsd,e)

(c
−(d,e,γs)
zd,e,•,•,γs + V η)

×
(czd,e,•,sd,e,γw + βsd,e − 1)

(czd,e,•,•,γw + V β)− 1
(5.3)

Given a particular zi, the probility of word wi is conditionally independent from
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Algorithm 5 Super-Word LDA Algorithm

Input: α, β, η,K, Document Corpus
Output: Z
Detect super-words for each document (i.e. generate image annotations)
Smooth corpus word data, discard super-word tags without a matching text-word
Initialize the z matrix with random topics (1...K)
Calculate initial values for ck,d,•,•, ck,•,w,γw , ck,•,s,γs , ck,•,•,γw , and ck,•,•,γs
for Iter = 1→MaxIter do

for all word/super-word tokens in the corpus do
if token is a word wd,e then

Exclude token from ckd,e,d,•,•, ckd,e,•,w,γw , ckd,e,•,•,γw
Sample new topic kd,e using Equation 5.3
Insert token in ckd,e,d,•,•, ckd,e,•,w,γw , ckd,e,•,•,γw

else if token is a super-word sd,e then
Exclude token from ckd,e,d,•,•, ckd,e,•,s,γs , ckd,e,•,•,γs
Sample new topic kd,e using Equation 5.3
Insert token in ckd,e,d,•,•, ckd,e,•,s,γs , ckd,e,•,•,γs

end if
end for

end for

the super-words. This model solves for the set of z by sampling an unknown token

td,e from document d and its associated topic kd,e. The probability p(zi|w, s, θm) is

calculated based on the proportionality in Equation 5.3 and the sample used to adjust

the model parameters. To properly utilize the Gibbs sampler, the influence of kd,e

must be removed from the applicable multinomial distributions, requiring some prior

knowledge whether td,e is a word or super-word.

The SWLDA algorithm is defined in Algorithm 5. It assumes words and super-

words are generated by a common vocabulary, permitting shared probabilistic influ-

ence when attempting to measure model parameters. The assumption is that this

shared vocabulary will improve latent topic models derived using this method over

those that only model text [14] or model text and image regions with independent

topics [13] [78]. Considering the success of the multinomial Dirichlet distribution

in modeling document generative models [14] [48] [114] [78], it seems reasonable to
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assume images also generate words fitting a multinomial Dirichlet distribution. By

producing super-words from images, the SWLDA algorithm leverages word proba-

bility when sampling super-word probability and vice-versa. The model behavior is

adjusted by modifying the Dirichlet Priors α, β and η.

While training the model, the fixed Dirichlet priors α, β, and η will emphasize or

de-emphasize each term. Increasing α decreases the impact that topics across that

document have on the overall topic probability p(w). An α near zero provides the

greatest impact for topics within documents, while a τ value of one emphasizes super-

word probability p(s|z). To increase the impact of the super-topic on overall topic

assignment, one would increase α and β to de-emphasize the word frequency p(w|z)

and document frequency probabilities p(w).

The SWLDA model is compared against Latent Semantic Analysis (LSA), LDA,

Blob Multimodal Latent Dirichlet Allocation (BMMLDA) and Weighted Term Latent

Dirichlet Allocation (WTLDA) using ten-fold cross-validation. LSA and LDA provide

a baseline performance measure while BMMLDA (section 5.2.3) is used to test co-

clustering against raw image blobs. WTLDA tests the efficacy of sampling the words

at a higher rate, then uses the biased LDA model to query by unknown documents.

All models were tested against the same data sets and attempts were made to choose

parameters that provided good results for each model.

5.1.1 Super-Word Generation.

Super-words are generated using the automated image annotation technique from

Chapter IV. WordNet [34] is used to take words surrounding an image and convert

them to synonymous sets (synsets). A synset is a lexical grouping of words defined by

meaning placed into an ontological hierarchy. This helps distinguish between the vehi-

cle ‘plane’ and the tool ‘plane’ when annotating an image. The top synsets are placed
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into the set of super-words along with their synonyms. Additionally, each synset has

a hyperonymys that defines the broader concept of the synset and hyponymys that

define specific instances of the synset. For instance, the earlier example ‘plane’ has

a hypernym of ‘heavier-than-air craft’. It includes the hyponymys ‘airliner’, ‘fighter’,

‘bomber’, and ‘jet’, among others. The hypernymys and hyponymys one level up and

down are also inserted into the super-word set, along with each of their synonyms.

This helps ensure a variety of words to leverage co-occurrence based on conceptual

meaning.

Since the method outlined in Chapter IV is not completely accurate, there will

likely be super-words that do not apply to a document’s image. To help eliminate

these mismatched super-words, those that do not map to a word within the corpus

are discarded. This has the added benefit of smoothing the data to improve latent

topic extraction.

For the experiment, SWLDA generated super-words using the techniques and

parameters defined in [90]. Dirichlet priors of α = 0.7, β = 1.01 and η = 1.1

produced the highest F-measure. The SWLDA method required 1,000 iterations to

converge on an effective model.

5.1.2 Word Generation.

Words are drawn from the document corpus and pruned. Stop words are discarded

and low frequency words eliminated. Comparison testing found pruning words that

appeared in the corpus fewer than ten times produced good results. Once stop-words

and low frequency words were eliminated, some documents contained few remaining

words. Documents with fewer than three remaining words were pruned. Comparison

testing demonstrated few gains were made by stemming words to their root forms.
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Figure 5.2: Processing Time, GLDA versus SWLDA.

5.1.3 Token Generation.

Words and super-word order are randomized prior to the first iteration. The

algorithm then chooses either a word or super-word from the randomized list based

on pw = cw
cw+cs

where pw signifies the probability that a word is chosen, cw represents

the number of words remaining that have not been chosen this iteration, and cs the

number of super-words not yet chosen. Comparison testing demonstrated that, while

random word selection requires greater iterations to converge, it results in clustering

improvement over using natural word order.

5.1.4 Model Complexity.

The complexity for our implementation of the Gibbs Sampling LDA is O(WKI)

where W is the number of words sampled from the corpus, K is the number of topics,

and I is the number of iterations to train the model. The additional complexity from

adding the super-words changes to O((W + S)KI) where S is the number of super-

words sampled. This is not counting the time to generate the super-words from the

images.

Experimental verification of this complexity used a laptop with an 2.00GHz Intel
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Core i7 CPU using a single core. The actual average processing time for the INitiative

for the Evaluation of XML Retrieval (INEX) 2007 test data used in Stage II is calcu-

lated for SWLDA and Gibbs LDA. The results in Figure 5.2 match the complexity

listed above since processing time should increase linearly with an increase in topics

K. The smaller number of additional super-words S causes SWLDA to increase at a

faster rate than Gibbs LDA with an increase in K.

5.2 Comparison Models

The SWLDA model is compared against the LSA, LDA, BMMLDA, and the

WTLDA models, all described in this section. Using ten-fold cross-validation, each

model is tested against the same data using tuned parameters to approximate optimal

performance.

Models were tested with a query by document approach [133]. This method uses

a previously unseen document, or set of words, to retrieve similar documents from the

corpus. While simple queries use keyword searches to return relevant results, they

frequently fail to identify synonyms of those keywords. Latent topics often improve

query by document since users do not have to match words in the document with

keywords exactly. Many papers test latent topic models using the predictive ability

of a model, measured as perplexity [14, 110]. Actual retrieval precision and recall,

however, directly test query retrieval performance [133, 6]. Only using precision,

however, ignores recall, or the number of in-category documents retrieved over all

possible in-category documents available (see Equation 2.23). F-measure provides

the harmonic mean of precision and recall. Illustrated in Equation 2.24, it is often

weighted to emphasize one over the other if necessary.
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5.2.1 Latent Semantic Analysis.

As mentioned in Chapter 2, LSA [26] reduces a sparse word occurrence matrix

using Singular Value Decomposition (SVD). This results in three matrices, P = ĤΣ̂V̂ t

where Ĥ and V̂ t are the left and right singular orthonormal matrices respectively,

and Σ̂ represents the diagonal matrix of singular values. The left and right matrices

represent topic and document relationships via a set of scalar values in Σ̂.

For this test, each matrix vector is sorted by the diagonal matrix Σ̂ and the

most N representative vectors kept while the rest are discarded. Each document

in the “unknown” set is compared by first transforming its word occurrence matrix

by multiplying d ∗ ĤΣ̂−1 and comparing the angle between the two vectors. The

challenge is in selecting the proper number of vectors N to adequately represent the

space while minimizing complexity. Deerwester, et al. [26] suggests selecting the

number that “yields good retrieval performance”. This research found N = 200

worked well. The number of documents returned is user-dependent. To simplify

comparison, the number of documents returned is based on the number of topics

generated by the other models, or the approximate average size of a latent topic. For

instance, if LDA is tested using 15 topics, LSA will return N/15 documents where

N is the total number of documents in the training set. While this provides a good

baseline, these results may be optimized using various clustering methods or other

distance measures in future research. LSA is one of the oldest models in the list and

provides a baseline measure for all other models.

5.2.2 Gibbs Latent Dirichlet Allocation.

Standard Gibbs sampling LDA [48] provides a pure generative model to compare

against SWLDA. Hyper-parameter selection is a complex task with a number of dif-

ferent approaches. Symmetric Dirichlet priors are typically the right answer [124],

76



though certain instances benefit from asymmetric priors. Increasing β with a sym-

metric prior de-emphasizes the influence of word topics in relation to document topics

while increasing α does the opposite. Griffith and Steyvers [48] suggest α = 50/T

and β = 0.1 where T is the number of topics. Initial comparison testing using the

U.S. Trademark and Patent Database from 2011 [2] found best results achieved us-

ing α = 0.4 and β = 0.5, though changes in the hyper-parameters had little effect

on overall performance. Initial testing using the INEX 2007 data set appeared to

contradict the above settings, performing better using a low alpha of α = 0.05 and

a high beta. Unfortunately, this decreases word probability influence to the point

where all documents cluster into the largest four or five topics, eliminating topical

discrimination for the small topics. In addition, since document/topic probability has

such a disproportionate influence over the model, all but LSA below would produce

essentially the same results as LDA. In addition, F-measure becomes biased towards

those large topics and provides misleading results. This justified limiting parameters

to α = 0.05 and β = 1.0, then keeping them as consistent as possible across the

different models. Model convergence was attained by increasing the number of iter-

ations to 700 for this data set. Larger data sets, on average, require more iterations

to converge while smaller data sets tend to converge earlier.

5.2.3 Blob Multimodal Latent Dirichlet Allocation.

The SWLDA model takes advantage of information within the embedded images

to improve latent topic extraction. Others previously discussed [7] have done some-

thing similar by directly using image blobs or blob to token translations. A slightly

different model was tested for two reasons. First, those that modeled blobs using

topic-based Gaussian distributions failed during comparison testing, likely due to

the rough landscape of the data domain. Using eleven topics, the Gaussian models
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merged into two primary topics with the other topic Gaussians representing no blobs.

Corr-LDA was also considered, but as it uses Gaussian distributions, it would likely

encounter the same issues as GM-LDA. Second, the model proposed by [7] and others

is primary designed to automatically annotate images using captions where this dis-

sertation attempts to improve document query performance. As the number of words

used as captions is increased by extracting surrounding paragraphs, the complexity

of the model in [7] increases significantly.

wz

θα

β

K

N

M
r τ η

ϕ

S
y

Figure 5.3: Blob Multimodal Latent Dirichlet Allocation Plate Diagram.

To test the efficacy of using blobs to improve latent topics, this research simplifies

the model in [7], resulting in the Blob Multimodal LDA (BMMLDA) model in Figure

5.3. Efficient Graph-Based Segmentation with Mean Thresholding [35] [90] segments

out blobs in the document and k-means clustering is used to assign similar blobs

the same label, symbolized by r. Blob topics, given as y, are sampled independent of

words. The multinomial distribution τ represents blob topic probability which derives

its parameters from the Dirichlet distribution with prior η.

BMMLDA had the highest F-measure with the largest thirty image blobs from

each image. Efficient Graph-Based Segmentation with Mean Thresholding [35] [90]

extracts the blobs and k-means clustering assigns labels using 100 clusters. Compar-

ison testing indicated almost no performance gain above 100 clusters. Each blob is

assigned a cluster label and Gibbs sampling is performed until model convergence
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occurs around 1,000 iterations. This process uses the same parameters as LDA with

equal emphasis to word and blob co-occurrence probabilities, or α = 0.05, β = 1.0,

and η = 1.0.

5.2.4 Weighted Term LDA.

The overarching assumption is that images hold topical relevance at or greater

than the surrounding words. The BMMLDA algorithm described above uses image

features directly. The Weighted Term LDA algorithm utilizes the super-words from

Stage I to improve the latent topic models. Following SWLDA [90], this work extracts

words surrounding the image, including the caption and surrounding paragraphs.

Because many words, such as ‘plane’, have multiple meanings, this method compares

the query image against a set of images in the ImageNet database containing aircraft

and a set of images containing tools used to shave wood. The image set with the most

similar features is judged as more likely to apply to the query image. Once a list of

likely annotations is generated, synonyms are produced using WordNet and the final

list is used as higher weighted terms under the assumption that they have higher

relevance. The weighted terms are then sampled at a greater rate than standard

words during model training, and is the basis behind the WTLDA model.

Comparison testing of WTLDA found sampling super-words thirty times produced

one of the higher F-Measures. It was assumed that all thirty samples would receive

the same topic assignment. Regular words are sampled a single time each and the

model used the same Dirichlet priors (α = 0.05, β = 1.0) and number of training

iterations (1000) as LDA.
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5.3 Evaluation

Testing of all algorithms uses the same twelve categories from the 2007 INEX

data set [28] detailed by Table 4.2. No attempt was made to balance category sizes

since real-world data will likely include unbalanced categories. Additionally, this tests

the tendency of large topics in Latent Dirichlet Allocation to absorb smaller topics.

Ideally, the super-words should provide additional probabilistic leverage towards those

smaller topics. Finally, not every image will generate super-words since graphs and

clip-art are discarded.

Ten-fold cross-validation is performed on the data, training the model with a

randomly-chosen 90% of the documents, then testing retrieval using the remaining

10%. Each of the “unknown” documents are selected and iterated into the model.

Words and super-words from the unknown document are used to adjust the model’s

multinomial parameters temporarily. The dominant topic for each document is calcu-

lated based on the topic most represented by the document’s words and super-words.

From there, precision, recall, and F-measure are calculated based on the documents

retrieved for that topic.

5.4 Results and Discussion

The top three annotations from Stage I were incorporated into Stage II as super-

words. Each annotation was expanded into its synonyms, hypernyms, and hyponyms

and each of those became super-words. Those super-words that did not have an

associated word were discarded. Tests were conducted using a range of 3 to 100

topics.

Figures 5.4, 5.5, and 5.6 show that all of the algorithms outperformed the baseline

LSA with precision, recall, and F-measure. Of models that incorporated image in-

formation, the two that incorporated super-words rather than image blobs, WTLDA
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Figure 5.4: F-Measure Comparison, 5 - 100 Topics.

and SWLDA, had higher recall and overall F-measure than all other models when

topics were greater than eight. BMMLDA offered little noticeable improvement over

Gibbs LDA using the image blob features, though did not decrease much either. In

all graphs, an increase in recall often came at the expense of a smaller decrease in

precision. The highest F-measure scores often were the lowest in precision, with the

exception of LSA which scored low on all measures.

LSA has a gradually increasing precision as the number of documents returned

in a query is decreased. This is due to a difference in how LSA tests unknown

documents and highlights why topic number is important. Latent topic models apply

overlapping topics to the documents and whole topics are typically returned for a

query. LSA does, however, calculate vector angles between two documents and can

be sorted from least to greatest. As the number of documents returned is shrunk, the

remaining documents become the ones most likely to be similar.
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Figure 5.5: Precision Comparison, 5 - 100 Topics.
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Figure 5.6: Recall Comparison, 5 - 100 Topics.
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Figure 5.7: F-Measure Comparison, 3 - 20 Topics.

The same phenomena applies to the topical models. The document corpus includes

a number of documents that are largely assigned to a topic while some include few

topical words or adhere more to a topic that is not well represented by the data set.

By increasing the number of topics, topical granularity is improved and the model is

better able to match an unknown document. For this reason, precision rises as topic

numbers grow. Of course, recall suffers as the entire category can no longer fit into

a topic. Performance gains are no longer being made in precision after about twenty

topics while recall continues to suffer as topic numbers are increased. Decreasing

topics, however, would hide many of the over 6,000 other manually annotated category

labels within the document corpus.

As manually generated document categories exist for this data set, query per-

formance can be used to determine the optimal number of topics. In this case, the

statistics stop decreasing at around forty topics, indicating the models are unable to
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Figure 5.8: Precision Comparison, 3 - 20 Topics.
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Figure 5.9: Recall Comparison, 3 - 20 Topics.
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extract more latent topics beyond that number. When few topics are used, WTLDA

has higher precision, recall, and F-measure, supporting the assumption that super-

words improve query on latent topic models. As the number of topics are increased,

however, it becomes unstable and query performance decreases. SWLDA needs at

least ten topics to score higher than Gibbs LDA, as indicated in greater detail by

Figures 5.7, 5.8, and 5.9. From that point, SWLDA maintains a consistently high

F-measure and recall than all but WTLDA. It overtakes WTLDA at around 25 topics

and steadies out in performance at around forty topics, maintaining the highest F-

measure score. This indicates that, while sampling super-words at a higher rate with

WTLDA provides a high F-measure when the number of topics are small, representing

words and super-words using a multimodal approach provides greater stability. Since

the optimal number of topics for a data set is typically not known without extensive

testing, SWLDA offers the best opportunity for producing a high F-measure.

Table 5.1: SWLDA Clustering Matrix Using 11 Topics.

Topic 1 2 3 4 5 6 7 8 9 10 11
Dogs 0 0 1 621 2 7 7 64 16 2 7
Mountains 0 0 8 2 1569 9 120 7 322 10 2
Aircraft 93 1128 18 1 3 344 2 9 2 3 160
WWII Ships 0 1 709 0 0 1 0 0 1 0 0
Armored Vehicles 0 58 1 0 0 3 62 0 1 0 0
Flowers 0 0 0 0 1 0 1 10 1 138 0
Skyscrapers 0 0 2 2 207 2 2 1 3 2 7
Elephants 0 0 4 5 1 4 0 3 21 1 1
Sailboats 1 2 80 2 4 10 0 15 5 1 1
Vegetables 1 0 0 3 1 1 0 3 0 277 0

Table 5.1 provides an example of a SWLDA clustering matrix. It shows how

each category clusters within the topics and provides insight into the advantages of

SWLDA over Gibbs LDA (Table 5.2). While the improvements to recall are visible

when comparing Tables 5.1 and 5.2, the loss of precision is also apparent. SWLDA

tends to produce a small scattering of a category across a number of topics. While
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Table 5.2: Gibbs LDA Clustering Matrix Using 11 Topics.

Topic 1 2 3 4 5 6 7 8 9 10 11
Dogs 15 0 1 0 0 2 227 474 0 5 1
Mountains 1 1 1073 1 0 880 63 3 6 3 0
Aircraft 0 5 0 382 108 0 34 0 26 353 877
WWII Ships 0 364 0 0 0 0 1 0 342 1 0
Armored Vehicles 0 0 0 125 0 0 2 0 2 0 0
Flowers 132 0 0 0 0 0 11 0 0 0 0
Skyscrapers 0 0 0 0 0 220 4 0 0 1 0
Elephants 4 0 0 0 0 0 35 0 0 1 0
Sailboats 0 5 0 0 0 0 18 0 93 3 2
Vegetables 284 0 1 0 0 0 10 0 0 0 0

it includes a relatively small proportion of each category, users will need to consider

whether the loss of precision is worth the gains in recall.

Table 5.3: SWLDA Clustering Matrix Using 5 Topics.

Topic 1 2 3 4 5
Dogs 3 6 5 4 709
Mountains 4 1986 13 21 10
Aircraft 1724 6 31 5 14
WWII Ships 2 2 694 0 0
Armored Vehicles 119 1 5 0 1
Flowers 0 2 0 143 0
Skyscrapers 2 31 3 188 5
Elephants 0 26 0 2 10
Sailboats 16 9 90 3 6
Vegetables 1 1 0 295 4

Tables 5.3 and 5.4 help illustrate how Gibbs LDA performs better at lower topic

levels. The four categories with the largest number of documents are ‘Mountains’,

‘Aircraft’, ‘Dogs’, and ‘WWII Ships’. When the topic number equals ‘5’, Gibbs LDA

draws those four categories, each into their own topic, with one topic left over for

the rest of the data. The low number of topics helps prevent the usual topic split

that Gibbs LDA does to the four largest categories. Yet, the problem with low

frequency scattering still exists with SWLDA. Hence, at this point, Gibbs LDA has
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Table 5.4: Gibbs LDA Clustering Matrix Using 5 Topics.

Topic 1 2 3 4 5
Dogs 710 2 16 2 0
Mountains 11 1 36 1976 4
Aircraft 23 1742 7 1 15
WWII Ships 0 3 0 1 695
Armored Vehicles 0 131 0 0 2
Flowers 1 0 143 0 0
Skyscrapers 1 0 238 0 0
Elephants 10 0 25 0 0
Sailboats 1 5 24 2 85
Vegetables 10 0 278 1 0

better precision, recall, and subsequently F-measure. It is, however, clustering six

out of the ten total categories into one topic and losing the ability to discriminate.

If the categories included an equal number of documents, the precision value would

illustrate this loss of performance.

5.4.1 Model Comparison.

Table 5.5 provides a summary comparison between the various topic models tested

in this dissertation. LSA was the baseline and certainly the fastest, but had the lowest

F-measure score. LDA was faster than any of other methods beyond LSA since it

had the lowest complexity and had no significant performance difference between

BMMLDA, though it did not incorporate images and, therefore, would not be able

to make any inferences regarding images. WTLDA had high performance with lower

numbers of topics, but lacked stability so performance fell off as the number of topics

was increased. The other models maintained fairly consistent results as topics were

adjusted.
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Table 5.5: Latent Topic Model Comparison

Supports
Model Name F-Measure Speed Images Stability
LSA L H N H
LDA M H N H
BMMLDA M M Y H
WTLDA H M Y L
SWLDA H L Y H

5.5 Conclusion

The SWLDA process and testing in this section supports the hypothesis that

incorporating highly-influential super-words into the LDA model can improve model

prediction over similar models for unknown documents. Once the hidden parameters

of the model are estimated, posterior probabilities can be used to draw inferences. The

super-word posterior probabilities indicate which super-words are more likely given

a particular document. This information can be forwarded back to the automated

image annotation algorithm to improve results from Stage I. This technique is further

described and tested in Stage III, detailed in the following chapter.
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VI. Stage III: Automated Image Annotation Refinement

Stage I produced image annotations based on the words surrounding an image and

the features of that image. While it demonstrated improved results over generalized

image annotators, there were still a number of poor annotations. This research hy-

pothesizes that the poor annotations will also be topically irrelevant to the document.

This means that posterior probability from the Stage II Super-Word Latent Dirichlet

Allocation (SWLDA) model in the previous chapter (indicated in Figure 6.1) can be

used to select topically relevant super-words over out-of-topic words. This chapter

describes stage III, or the automated image annotation refinement stage, of the Auto-

mated Image Annotation and Latent Topic model. It first discusses the methodology

and experimental design, then summarizes and analyzes the results.

6.1 Methodology and Experimental Design

Posterior probabilities can align image annotations more closely with document

topics. The risk is that this could create a homogeneous set of annotations and

decrease word specificity. Ideally, the method chosen to combine the image and text

posterior probabilities would maintain the diversity in both topic probabilities, local

word context, and image features.

This section first discusses several options for posterior probabilities and indicates

which was chosen. Next, it discusses potential means for combining the Earth Mover’s

Distance (EMD) from Stage I and the SWLDA posterior probability from Stage

II, along with the comparison testing performed on each. This is followed by the

experimental set up and results that show improved annotations
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Figure 6.1: Automated Image Annotation and Latent Topic Iterative Model.

6.1.1 Options for Calculating Posterior Probability.

There is not a direct probabilistic relationship between data produced by the

automated image annotation techniques in Stage I and posterior probabilities in Stage
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II. This section presents three options for combining these values.

6.1.1.1 Posterior Probability Option 1: Word Probability.

The first option looks at word posterior probability independent from super-word

probability, or p(wi|θd, φi) where wi is the word indexed by i and θd is the multino-

mial probability of the document/topic probability for document d. The multinomial

probability φi provides the word/topic probability indexed or word i.

6.1.1.2 Posterior Probability Option 2: Super-Word Probability.

The second option uses solely super-word probability independent from word prob-

ability. This finds p(si|θd, ηi) where si is the super-word indexed by i and ηi is that

super-word’s word/topic multinomial probability.

6.1.1.3 Posterior Probability Option 3: Combined Probability.

Finally, we can use a hybrid weighted combination of the two probabilities with

pc = w1 ∗ p(wi|θd, θi) + w2 ∗ p(si|θd, ηi).

p(si|θd, τi) =

∑T
t=1 p(zd,t)p(si,t)∑S

w=1

∑Z
t=1 p(zd,t)p(sw,t)

(6.1)

The posterior probability of the super-word given a particular document is defined

by Equation 6.1. The p(zd,t) is the probability that a document has a particular

topic, while p(si,t) is the probability that a super-word is in a particular topic. The

denominator is the normalizing summation. Comparison testing demonstrated the

super-word probability provided the best image annotation improvements while word

probability and a weighted combined probability performed worse.
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6.1.2 Options for Combining Posterior Probability with Earth Mover’s

Distance.

While word or super-word posterior probability provides the likelihood that a

particular word or super-word will be generated, it does not take into account image

features. An algorithm that is able to incorporate both posterior probability and

image feature information may be able to build improved image annotations. Com-

bining posterior probability and image features is challenging. This section lists four

options for combining posterior probability with image features.

6.1.2.1 Option 1: SWLDA Threshold, EMD order.

The first option takes the top ten words based on super-word posterior probability,

then ranks those words using descending EMD. This method has the benefit of

pruning the search space even further by eliminating unlikely words based on the

document topic, then using their image features to select the best words. This option

tended to produce poor results in comparison testing, likely since initial evidence

indicates super-word posterior probability does a better job after the first iteration

than EMD in annotating images.

6.1.2.2 Option 2: Average Merge.

This option averages the two lists together, producing a combined list. A word

in position ‘1’ for one list and position ‘5’ for another would average to position ‘3’.

This is a very simple solution though it makes the assumption that each list is equally

accurate. If we determine one list tends to be more accurate than the other, we can

weight the list. Therefore, the position of word i in the overall list, or poi is based on

a weighted average of the position of the word in both lists. poi =
pli∗w1+pai ∗w2

w1+w2
where

pai is the position on the image annotation list and pli is the position on the latent
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topic probability list. w1 and w2 are user-defined weights. This option was one of the

better performing options with a typically higher relevancy score to automated image

annotations. It was not, however, the best algorithm from a relevancy standpoint

and it required tuning the weights for ideal performance.

6.1.2.3 Option 3: Normalized Weights Based On Posterior Proba-

bility and Earth Mover’s Distance.

This option uses weights based on normalized probability and normalized EMD

to construct an overall ranking. This accounts for words with very high probability

compared to their peers or very low EMD. In this case the ranking ri is given by

ri = w1
p(vi)∑
i p(vi)

× w2
MAXEMD − EMDi∑
iMAXEMD − EMDi

(6.2)

where w1 and w2 are user-defined weights, p(vi) is the probability drawn from the

latent topic model for word vi, and EMDi is the EMD for word i. MAXEMD repre-

sents the maximum EMD value of all applicable words and is used to convert EMD

into a measure where smaller values signifies less of a link between word and image.

The advantage of this method is that words with extremely low applicability will be

penalized appropriately while those with high applicability in one list may not be

penalized as much by mediocre applicability in the other list. Comparison testing

demonstrated this method offered little improvement over option 2.

6.1.2.4 Option 4: Rank Solely by Super-Word Posterior Probabil-

ity.

This rank-orders the words solely by p(si|θd, ηi). The initial super-words are de-

rived from the image annotation algorithm which helps prune the space to a subset.

The assumption is this subset of words is more likely to produce relevant annota-
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tions and, taking these high relevancy annotations, sorting them by posterior prob-

ability produces further refined annotations. Comparison testing demonstrated this

approach produced the most consistently high results of the four methods.

6.2 Iteration and Annotation Expansion

Ideally, Stage I and Stage II will prune the list to the most relevant words. Higher

confidence in the remaining words permits their further expansion to ensure an as-

sortment of highly relevant words. Higher hypernym and lower hyponym levels can

be added to the list, processed through the automated image annotator, then pruned

using SWLDA. This can be repeated until convergence, though defining convergence

is not straightforward. At a certain point, adding more words to the list of possible

words fails to produce higher relevance words and creates categorical overlap. Ad-

ditionally, expanding hypernyms could cause less specific words to push out more

specific ones.

Comparison testing demonstrated some benefit to expanding hypernyms/hyponyms

to create a larger pool of potentially applicable words. Not expanding for an iteration

decreases noise and helps prune off some of the poorer performing words. Potentially,

a solution would be to switch off, expanding one iteration and not the next. This

research tests both approaches, expanding each iteration and expanding every other

iteration.

Of course, as super-words are pruned using this iterative approach, the number

of image annotations shrink. These can be expanded by exploring synset hypernyms

and hyponyms since their meaning will be similar, yet they may provide more relevant

annotations. As comparison testing discovered, expanding hypernym and hyponym

results too early can create a large number of inaccurate words and result in an

imprecise model. Ideally, once the list of super-words has been pruned to a small
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number of highly relevant annotations, they can then be expanded and pruned using

an iterative approach.

6.3 Experimental Design

This method is tested using the same INitiative for the Evaluation of XML Re-

trieval (INEX) 2007 Wikipedia Dataset [28]. Performance is verified using Amazon

Mechanical Turk (AMT) scores. Five AMT workers rate the relevancy of a word to

an image from one to five, where one indicates not at all relevant and five indicates

completely relevant. The average score between the five workers is calculated and

used as the standard. Results are generated automatically using the method defined

in this dissertation and the results compared against the AMT scores. The AMT

score of the top five words selected are averaged to produce a score for that image.

6.3.1 Pruning and Smoothing.

Words are drawn from the corpus and pruned in the same fashion as Stages I and

II. The same level of pruning was used for each iteration of the algorithm, drawing

the text from the original source documents. This means that the regular document

words will not change even though the super-words will be refined with each iteration.

Super-words that lack a representation within the regular word set are discarded with

the assumption that words not appearing elsewhere in the corpus are unlikely to apply

to the image.

Similar to Stage II, words and super-word order are randomized prior to the first

iteration of the SWLDA algorithm. The algorithm then samples a word or super-

word from the randomized list based on a probability, defined as pw = cw
cw+cs

. In this

equation, pw signifies the probability that a word is chosen, cw represents the number

of words remaining that have not been chosen this iteration, and cs the number of
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Table 6.1: Stage III Results - Hypernym/Hyponym Alternating Expansion

1 2 3 4 5 6
Avg Score - Best Case 1.985 2.110 2.134 2.213 2.215 2.239
Avg Score - Worst Case 1.985 2.096 2.119 2.115 2.059 1.952
# Super-words 30245 6804 99516 6555 55291 6905
Avg Words Per Image 6.53 7.00 3.15 4.58 2.33 4.25
SWLDA F-Measure 0.512 0.504 0.491 0.501 0.491 0.488
Hyper/Hypo Expansion Y N Y N Y N

super-words not yet chosen.

6.4 Results and Discussion

Image annotation refinement used the results from both the automated image

annotation in Stage I and the SWLDA posterior probabilities in Stage II to refine

image annotation. The super-words from Stage II are rank-ordered for each image

based on their SWLDA posterior probabilities and scored as in Stage I. However,

there was one main limitation of the data. In Stage I, all results were validated by

Amazon Mechanical Turk (AMT) workers. Due to insufficient resources, accurate

scoring could only be performed in most of the first three iterations. To compensate

for this, two values are calculated. The first extends the average scoring for that

image to all “unknown” image/word pair scores. While this is considered the “best-

case” scenario, a true “best-case” would be to assume all missing scores are ‘5’. This

is, however, unrealistic so the average score is used. The second row provides the

worst-case score, assuming unscored image/word pairs receive a ‘1’.

Tables 6.1 and 6.2 provide the results of two different methods. The first method

expands words into their hypernym/hyponym forms every other iteration. During the

non-expansion iterations, words are pruned based on low posterior probability. The

second method, with results described in Table 6.2, expands hypernym/hyponym

forms each iteration and produces far more super-words, but dilutes the average
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Table 6.2: Stage III Results - Hypernym/Hyponym Full Expansion

1 2 3 4 5
Avg Score - Best Case 1.985 2.144 2.197 2.232 2.296
Avg Score - Worst Case 1.985 1.995 1.887 1.871 1.882
# Super-words 30245 88021 48174 78628 55291
Avg Words Per Image 6.53 7.00 4.65 4.29 3.69
SWLDA F-Measure 0.512 0.506 0.496 0.521 0.500
Hyper/Hypo Expansion Y Y Y Y Y

score for that iteration. Both tables use super-word posterior probability, or Option

4 defined in Section 6.1.2.4.

The best-case score demonstrates that, as new words are added through expansion,

the worse performing words drop out. This causes the best-case score to climb, though

this may be misleading since the “unknown” scores could be unrelated word/image

pairs. Assuming that every new word without an AMT score is scored as 1, we see

the potential for hypernym/hyponym expansion to result in poor image annotation.

Attempts were made during comparison testing to not expand hypernyms or hy-

ponyms during any iteration. Unfortunately, this did not improve automated image

annotation relevancy, but only served to decrease the average number of words per

image through constant pruning.

Table 6.2 expands hypernym/hyponyms every iteration and quickly reaches the

“best case” score. It does, however, result in a rapid decline of the worst-case score,

indicating that a few good annotations are being replaced by potentially bad anno-

tations.

The first iteration of these two tests demonstrates an improvement in image anno-

tation relevancy using SWLDA posterior probability. SWLDA performance is tested

to determine if document retrieval, scored by F-measure, improves using the improved

image annotations. While it does not get significantly worse, it also does not appear

to improve. One hypothesis is that each iteration moves the model away from annota-
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Table 6.3: Sample Automated Image Annotation Refinement Results Using Aircraft
Image.

First Iteration AMT Score Third Iteration AMT Score
line (cable) 1.0 aircraft 5
aircraft 5.0 craft 4.2
line (production) 1.0 — —
line (telephone) 1.0 — —
guppy 1.0 — —
Average 1.8 4.6

tions derived using image features and more towards corpus word probability without

super-word influence.

Table 6.3 provides an example of an image and its super-words. Based on the

local context and image features, the words aircraft, three variations of the word line,

and a fish variety were chosen. Aircraft was expanded into craft during iteration

two, then pruned during iteration three. This process eliminates the unrelated “line”

words and the guppy, leaving the two relevant words.

Table 6.4 provides a second illustration, demonstrating the changes made using

super-word posterior probability. ‘Button’ is expanded into its alternate form ‘push’

and ‘switch’ while ‘bridge’ is likely expanded in error from ‘crane’. Finally, ‘radius’

and ‘spoke’ are pruned off as topically irrelevant.

The final example in Table 6.5 identifies three words from the local context and is

based off image features. Annotations ‘hound’ and ‘coonhound’ apply directly to the

image while ‘basset’ is close. Notice that ‘basset’ was rated higher than the perfect
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Table 6.4: Sample Automated Image Annotation Refinement Results Using Dog Image.

First Iteration AMT Score Third Iteration AMT Score
radius 1.0 button (push) 3.8
button (fastener) 1.0 push (button) 3.8
button (push) 3.8 switch 4.2
crane 1.0 bridge 1.0
joystick 4.6 — —
Average Score 2.3 3.2

Table 6.5: Sample Automated Image Annotation Refinement Results Using Joystick
Image.

First Iteration AMT Score Third Iteration AMT Score
hound 4.8 basset 4.8
coonhound 3.4 coonhound 3.8
black 1.0 wolfhound 3.8

— — —
— — —

Average 3.1 4.1
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fit of ‘coonhound’, indicating some uncertainty and variability in human annotations

due to lack of information on specific dog breeds. After the hypernyms and hyponyms

are expanded, then pruned once more, the unrelated word ‘black’ is pruned off and

replaced by a closer word ‘wolfhound’. Again, even with humans providing annota-

tions, they scored ‘coonhound’ the same as ‘wolfhound’, even though the former looks

closer than the latter.

These three examples provide an idea of improvements using posterior probability.

While many do not perform as well as these examples, enough improve to increase

the overall score. Much of the increase comes from pruning poor words, however,

some new words are added.

6.5 Conclusion

This chapter demonstrates that posterior probability from topic modeling (Stage

II) can help improve automated image annotation. By pruning topically irrelevant

words and expanding topically relevant words, image annotations can be improved

with only a small loss in specificity. Also iterating the entire model by feeding image

annotations back to Stage I can further improve image annotation.
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VII. Part II: Applicability of Latent Dirichlet Allocation to

Multi-Disk Search

For a forensics analyst, data stores will likely include a variety of disjointed doc-

uments with sometimes topically-irrelevant embedded images. Much of a hard drive

may include directories of images without much context. With all that noise, extract-

ing topically relevant data is tricky. Responding to a query for topically-relevant data

is tougher.

Part II attempts to address whether the models described in this dissertation can

be used by the digital forensics analyst to extract meaningful information from a

corpus of real-world digital forensics data. To answer this question, we first calculate

statistics on the user-generated data in the Real Data Corpus (RDC) [42] to identify

areas suitable for search evaluation. Then we use a series of tests that replicate com-

mon digital forensics tasks. The first test uses a set of queries on three different topics.

Search using Latent Dirichlet Allocation (LDA) is compared against traditional reg-

ular expression search based on the relevancy of returned results. The second test

measures the ability of LDA to topically segment a corpus, then separate a selected

topic into subtopics. Finally, the third test compares query using LDA to query using

regular expression in a topically noisy environment. The section first discusses the

methodology and experimental design, then summarizes and analyzes the results.

7.1 Methodology and Experimental Design

The Naval Postgraduate School and University of North Carolina maintain a col-

lection of hard drives called the Real Data Corpus (RDC) [42]. It contains a wide

range of disk images extracted from storage devices purchased on the open market

and separated by country. The devices range from 8MB to 480GB hard drives and in-
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cludes data previously stored on phones, flash cards, USB drives, and multi-partition

hard drives. These drives are stored as Encase files, Advanced Forensics Format

(AFF) files, or in raw form. The entire corpus used in this testing consisted of 2,435

disks from twenty-five different countries.

The remainder of this section describes the process used, including how images

are verified, mounted, and searched. It then discusses how the latent topic models

were run against the corpus.

7.1.1 Disk Image Extraction.

Since this research is primarily interested in user-generated data, some processing

was required to prune irrelevant data. Disk images consisted of several formats,

including the Encase file format, Advanced Forensics Format (AFF), and raw disk

images. All steps were accomplished on a Ubuntu Linux system. Encase files were first

verified using ewfverify. They were then mounted using ewfmount and any errors in

the process documented. AFF files were mounted using ‘affuse’. Once the specialized

image was mounted, the raw image could be accessed and mounted to a loopback

device using ‘losetup’, then the file system mounted using ‘mount’. Raw image files

were mounted directly using ‘losetup’ and ‘mount’. File systems were then traversed

using Java code.

7.1.2 File Extraction.

Of the 2,435 drives, 920 had user-created files. Exclusion directories had to be

identified for some common directories with large numbers of boilerplate files. These

included common systems directories, such as C:\WINDOWS and frequently seen

applications. Further pruning used a database of SHA1 hashes so duplicates could

be identified and purged. All remaining interest files were read into the Java function
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MessageDigest in the java.security library and the resulting strings loaded into the

MySQL database for comparison against other files. Additionally, only files with

English were included to constrain scope. Finally, only files that matched one of a set

of extensions were extracted. Text files were read using simple Java input functions

while images were loaded using OpenCV. The Java LibreOffice API 4.1.0.0a library

was used to load Microsoft or OpenOffice applications and parse the text and images.

Each document is processed using a variety of techniques. Microsoft Word doc-

uments have their text and images extracted and stored in a database. Images are

exported to the disk and information about the image stored in a database table. Raw

text files tended to be either logs, application data, readme files, or e-mails. Since

e-mails are the only applicable documents for this research, they were identified using

a regular expression search and extracted while all others were discarded. Extensible

image file format (exif) information is extracted from image files and stored in the

same database. Web browser caches were extracted separately from the rest of the

files since those aren’t user generated data. Browsers’ caches were extracted from

Microsoft Windows machines and included Internet Explorer, Netscape and Firefox.

Several tests were accomplished to identify areas promising for image annotation

and Super-Word Latent Dirichlet Allocation (SWLDA) experiments. Each image

is checked to assess if it looks like a graph using the method defined in Section

4.3.2. Faces are detected using a boosted cascade of Haar-like features [123]. To

maintain consistency across image analysis and to improve speed, they are shrunk to

400 pixels wide, then face detection is performed on the image. An initial sampling of

the Microsoft Word documents indicated the majority are business documents. Most

embedded images are of graphs, diagrams, or close-ups of machine hardware.

Experimental design can not account for issues arising from the fact that the data

consists of real-world hard drives from an assortment of disk images. It lacks valida-
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tion information, and document categories must be manually assessed to determine

clustering effectiveness. Additionally, one hard drive may not contain enough infor-

mation to extract latent topics and precise image annotation. Using documents from

several hard drives, however, joins together data that likely has no connection. If a

set of hard drives exist that appear to be from a similar source, such as those from

the same company or university, combining the data may prove useful. All these

decisions were manually assessed and noted for each test.

7.1.3 Latent Topic Search.

Digital forensics practitioners rely mainly on keyword search to identify useful

information [71]. Some best practices do exist when crafting keyword searches [85],

however, most rely on experience and intuition to build a keyword list likely to produce

relevant query results and limit false positives. Large corpus compound the search

problem increasing false positives and expend the available manpower.

In addition to proper keyword selection, regular expression search requires intelli-

gent parameter tuning. Regular expression search benefits from term weighting since

some terms often have higher relevance for a topic than others. Ideally, relevant doc-

uments will contain a number of keywords with high frequency. For this research,

the document list is sorted first by the unique keywords found, then by the keyword

score. The score s is calculated as s =
∑K

i=1wiki where K is the set of keywords, ki is

the frequency of keyword i and wi is the weight of keyword i. The ‘unknown’ target

documents are identified and used to compare each algorithm based on its position

in the query results.

The LDA tests are designed to be as close to the regular expression search as

possible, including using the same keywords where applicable. Once the LDA model

parameters have been estimated, they can be used to draw conclusions about new

104



data. In this research, the LDA topic model is trained using Gibbs sampling, varying

iterations based on corpus size. For example, models formed using the Israeli corpus

are trained using 1,400 iterations due to its large size while models trained on the

Serbian corpus only required 1,000 iterations to converge. LDA fixed prior Dirichlet

parameters are α = 0.05 and β = 1.0. Unless otherwise specified, twenty-five topics

are used as it provides acceptable granularity in comparison testing while maintaining

reasonable algorithmic speed. Equation 7.1 defines the probability that a document di

relates to the provided set of keywords X. Multinomial parameters φ and θ define the

document-topic and word-topic probabilities for each topic K. Weights are used to

stress certain probabilities over others and are defined as wj, the weight for keyword

xj.

p(di|X, θ, φ) =
K∑
k=1

(
p(di,k|φ)

∑X
j=1wj, p(xj|θ)∑X

j=1wj

)
(7.1)

Word documents were chosen over other document types since they had the largest

quantity of text user data. Adobe PDF documents tended to be related to user

manuals or other documents downloaded from the internet. To avoid confusing the

algorithm, these were excluded. Similarly, Microsoft Excel documents and Powerpoint

presentations lacked sufficient text to assist in latent topic extraction.

7.2 Real Data Corpus Analysis

Of the 920 disks that had user-created files, the top ten disks with respect to file

count held 36% of the total number of files. The mean number of files per image was

977 with a medial of 77 and the largest drive held 109,938 of the interest files. This

appears to indicate that most computer users do not have a significant amount of

data on their computers, while a handful of users generate a large number of files.

Of the 25 countries with disks in the corpus, Israel had the largest number of user-
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Table 7.1: Drive and File Statistics by Country.

Country (code) Total Drives Drives Total Interest
Drives Loaded Failed Files

Israel (il) 297 283 14 146,297
India (in) 672 566 106 90,390
Mexico (mx) 175 175 0 85,479
Palestinian State (ps) 140 126 14 76,566
Serbia (rs) 8 7 1 23,184
Serbia and Montenegro (cs) 16 15 1 16,850
Canadian (ca) 18 11 7 14,173
Singapore (sg) 34 23 11 8579
Turkey (tr) 10 10 0 7302
Panama (pa) 17 15 2 6434
China (cn) 808 808 0 5141
Unknown (nnn) 109 109 0 4072
Egypt (eg) 7 7 0 3734
Ukraine (ua) 57 50 7 3577
Pakistan (pk) 85 82 3 2372
Ghana (gh) 21 20 1 1506
Germany (de) 4 2 2 1444
United Arab Emirates (ae) 39 34 5 624
Japan (jp) 13 13 0 423
Hong Kong (hk) 4 4 0 320
Morocco (ma) 11 10 1 44
Bangladesh (bd) 57 54 3 18
Switzerland (ch) 2 2 0 0
Hungary (hu) 22 2 20 0
Thailand (th) 4 4 0 0
Total 2,630 2,432 198 98,529
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generated interest files, as indicated in Table 7.1. Though many files were written in

Hebrew, a number were written in English, making it the richest disk set in terms of

searchable English data. The Indian collection held a number of files from a variety

of disciplines, including political, business, and scientific topics. Though China had

the largest number of drives, they held few files in English beyond operating system

and application files. Those few Microsoft Word documents that did appear were

mostly written in Mandarin. Likewise, the Mexican corpus included a large number

of interest files, but most were in Spanish. This dissertation constrains the scope by

primarily using English documents, though there is ample data for research in other

languages.

7.2.1 File Types.

Figure 7.1 provides file extensions of extracted files by frequency in descending

order. Images are a significant portion of the overall file count, with JPEGs as the

most common file. A majority of these images were personal photographs taken with

digital cameras. Others largely consisted of images downloaded from web pages or

unique images that were part of an application. The corpus contains over 350,000

MP3s, predominantly music.

Figure 7.2 lists the file types by country. The preponderance of JPEG files is

apparent in most countries, but some differences stand out. For instance, the Pales-

tinian State (ps) has few JPEGs but a large number of TIF files. Israel and Mexico

have the largest corpus of Microsoft Word documents, though the Mexican docu-

ments are written mostly in Spanish while the Israeli corpus has a number of English

documents.

The HTML files listed in Figure 7.1 are those found outside of the browser cache.

Those files were extracted too, but are counted separately since they reveal differ-
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Figure 7.1: Corpus File Type Statistics.

ent information about user habits. These HTML files mainly consists of web pages

saved to disk and user manuals for products. Since most of these documents are not

generated by the user, they are not included. Each of these HTML files also likely

includes an assortment of images. Browsing through the extracted GIF files reveals a

number of simplistic graphics that are used for web page borders or have other deco-

rative purposes. This high number of non-interest files demonstrates that, even with

excluding common directories and pruning duplicates, there is still a certain level of

noise.

This research extracted 205,389 images from the disks and found another 34,553

images embedded in Microsoft Word documents, as shown on Figure 7.2. To un-

derstand the applicability of this data set towards automated image annotation and

latent topic extraction research, several tests were accomplished. Graphs, such as
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Figure 7.2: Corpus File Types by Country.

Table 7.2: Corpus Image Statistics for Regular and Embedded Images.

Regular Embedded
Image Count 205,389 34,553
Percent Graphs 35% 47%
Percent with faces 25% 11%
Percent with camera info 32% N/A
Images with GPS Info 324 N/A
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Table 7.3: Corpus Statistics for Images Embedded In Documents.

Number of documents 55,443
Perc. docs with embedded images 16%
Perc. docs with viable SWLDA images 8.5%
Disks with embedded image files 253
Avg embedded image file per disk 35

line graphs, pie charts, and line drawings often require different techniques than pho-

tographs since they lack complex image features. Each was checked to determine if

it looked like a graph using the method defined in Section 4.3.2. The more shading

or color variations in an image, the less likely it will be detected as a graph. Often,

line drawings include shading or color shifts and result in a false negative. For this

reason, the numbers listed in Table 7.2 are probably lower than the actual number.

The images extracted from the disk were examined for EXIF information. While

many images had EXIF information indicating the editing software used to create

or manipulate them, personal photographs tended to include camera information.

Fully one-third of all images had camera information and a small percentage of those

included Global Positioning System information from the location where the picture

was taken.

This research considered attempting to automatically annotate images with local

context, similar to Stage II. Unfortunately, as Table 7.3 indicates, only 16% of the

Microsoft Word documents have embedded images with at most half those contain-

ing images that are not graphs. Considering that 253 disks have documents with

embedded images, there were only an average of 35 viable documents per disk with

no guarantee for cross-document topics. The low number of images results in a sparse

super-word matrix and low probabilistic granularity. Due to the super-word influence

and availability, automated image annotation using topical context is not attempted;

however, this could provide an avenue for further image annotation research.
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7.2.1.1 E-Mail and Web Caches.

The e-mail within the corpus was analyzed using topic models. Identifying e-

mails from other text documents, such as logs, required using a regular expression

search for e-mail addresses. An LDA model was built on the corpus of e-mails and

analyzed. Unfortunately, due to the significant portion of advertisements and e-mail

text from internet service providers, the latent topics did not reveal very interesting

information.

The web caches were similarly analyzed with lackluster results. Most topics ap-

peared to be clustering from advertisements or mail clients. While adult websites did

cluster into their own topics, most other topics were difficult to draw many inferences

from the results. Better results may be gained by utilizing filtering tools to eliminate

advertising and boilerplate text before clustering with LDA.

The poor performance of e-mail and web analysis could be improved by using

intelligent parsing algorithms. Web pages tend to include the main subject of their

page in the center with advertisements, links, and artwork surrounding the topical

text. E-mails tend to include specific formatting that could be used to separate

manuals containing e-mail addresses from actual e-mails. Commercial tools exist

that extract data from both e-mail and web cache data. Web tools provide browsing

history and pattern information, as well as facilitate relevant data extraction from

web pages. E-mail data extraction tools look for e-mails in common locations and

formats. Future work may be improved by utilizing these pre-processing methods or

commercial tools.

7.2.2 Using LDA for Digital Forensics.

The LDA algorithm was tested on the corpus using a variety of tasks mimicking

standard digital investigations tasks. Our initial research focused on using LDA to
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Table 7.4: Sample of LDA Results from India Corpus.

File
Topic Count Representative Words

10 583 pune project ltd work com date training management pvt experience
11 249 india years bank company market year financial policy services
12 511 date prices power pune supply may required installation order
13 21 nanotubes carbon dna memory nram nanotube sequence computer
14 8 horus earth god seven two mother egyptian great heaven amenta
15 4 iii drone vii viii xii queen nic xvii xiii bel analogy ioc polaris patni xvi

extract common topics among various corpus. Table 7.4 illustrates the results of

an LDA model built using the India corpus. Each topic is represented by a set of

words that have the highest probability of being in that topic. Many topics, including

10-12 in the example, appear business-related. Topic 10 has a project management,

personnel, or resumé tone, also mentioning the Indian city of Pune. Topic 11 contains

words related to finance or market analysis. Topic 12 refers to the city of Pune, but

appears to deal more with ordering systems. With topic 13 and 14, very different

topics are evident from the rest–the first related to science and the second ancient

Egyptian gods. The final topic listed only has four files associated with it and appears

to include a number of Roman numerals.

Initial analysis of the Indian corpus seems to indicate the main topics center

around business and science. The Israeli corpus includes some business topics as well

as a large number of Jewish religious and cultural topics. It also contains several

unique topics such as photography, educational topics, and Japanese historical and

political analysis,

Table 7.5 defines an initial estimate of the major topics that emerged when LDA

was performed on the corpus for each individual country. Most topics from the

Mexican Word documents were in Spanish and the single English topic looked like it

was derived from software manuals. Some, like the hard drives labeled from Panama,

contained moderately uniform topics centered around medical research. A brief survey
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Table 7.5: Country Microsoft Word Document Count and Major Topics.

Country (code) Total Assessed
Word Files Topics

Israel (il) 210477 Jewish culture and religion, politics, news
Mexico (mx) 14777 all Spanish words, plus one computer topic
Serbia & Montenegro (rs/cs) 7565 commerce, power generation, health
India (in) 4332 business, science
Singapore (sg) 3833 business
Palestinian State (ps) 1921 computer systems/applications, business
Panama (pa) 1244 medical research
Pakistan (pk) 212 business
Ukraine (ua) 170 UAE business, French words
China (cn) 134 N/A
Unknown (nnn) 50 German words
Egypt (eg) 49 syringe production
Hong Kong (hk) 34 N/A
Turkey (tr) 34 N/A
Ghana (gh) 11 N/A
Canada (ca) 10 N/A
United Arab Emirates (ae) 7 N/A
Japan (jp) 3 N/A

of the document contents indicates significant amounts of Arabic letters, signifying

these drives were likely mislabeled and came from Pakistan. The researchers who

collected the data had awareness of this and had plans to correct the labels.

The inconsistent labels provide valuable data points for this research. Two LDA

results for the disks labeled ‘pk’ and those labeled ‘pa’ offer some clues to how they

were collected. While the ‘pk’ disks include large quantities of English words and

business topics, the hard drives labeled ’pa’ contain numerous Arabic letters. Where

there are English words, the topics are mainly focused on medical research and aca-

demics. Processing some of the Arabic text through a translator reveals medical

topics. This implies that the drives marked ‘pa’ were drawn from similar businesses

while the ones marked ‘pk’ were drawn from a medical university.

Country corpus with fewer than 200 documents tended to perform poorly, produc-

ing topics without distinct differences in topics. The drives marked ‘ua’ had a number
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of documents related to business in the United Arab Emirates from four separate hard

drives while a fifth hard drive contained mostly French words. The LDA model pro-

duced topics that had a mix of English and French words which, given those appeared

in completely separate documents, illustrated a lack of consistent topical division in

LDA. Likely, this was caused by the low number of documents and would benefit

from some parameter tuning. The Chinese hard drive documents mostly contained

Mandarin symbols which are out of scope for this research.

7.2.3 Test 1: Information retrieval.

The first test compares information retrieval results using regular expression search

and LDA search. Documents are first pruned that have fewer than ten words and

words that have fewer than ten instances in the corpus. Initial testing demonstrates

this caused no decrease in performance for keyword search and is required for adequate

performance of LDA search.

Since LDA is a stochastic algorithm, results will vary depending on the starting

order of words and documents. To get an average, the LDA algorithm is run 30 times.

Posterior probabilities provide the top 25% of documents most likely to match the

keywords. These documents are used in a second iteration of the LDA algorithm

where the process is performed again.

7.2.3.1 Retrieval topic 1: Passport files.

The first retrieval topic assumes the analyst wants to find documents related

to passport requests. Four files have been pre-identified in the Israeli corpus and

keywords selected (Table 7.6) that are similar to what an analyst might choose for

this purpose. After pruning, 10,999 documents from 70 disks are able to be searched.

Three of the target documents are in one disk while the fourth is in another.
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Table 7.6: Topic 1 Keywords

Keywords Weight
passport(s) 3
ambassador 3
embass(y|ies) 2
visa 2
clearance 1
application 1

Table 7.7: Topic 1 Document Rankings - Passport Files.

Regex LDA Iteration
Search 1 2 3 4

Document # 10999 10999 2506 615 150
Doc 1 µ 11 1459.1 282.3 86.9 9.4

σ — 512.0 135.5 57.0 6.4
Doc 2 µ 58 1766.8 242.9 62.8 10.2

σ — 1139.8 168.0 51.0 6.3
Doc 3 µ 53 1859.5 297.1 68.1 10.2

σ — 1223.7 145.9 59.9 5.5
Doc 4 µ N/A 2749.5 459.5 91.3 32.7

σ — 1515.0 231.5 50.3 30.2
Prob. Of Loss — 0.49 0.37 0.12 0.44

Table 7.6 and 7.7 provide the list of keywords and the average position of the

four target documents within the query results. Standard deviation provides the

variation of the LDA algorithm results and may be an indicator of the difficulty the

algorithm has categorizing the document. The final row, ‘Prob. of Loss’, provides

the likelihood that a document will not survive to the next iteration, assuming only

25% of the documents survive.

Regular expression keyword search does better than a single application of the

LDA query algorithm by returning the target documents in positions 11, 53, and

58 of the results. The fourth document is pruned from the list since it did not

include any of the query words in the text. LDA, on the other hand, has a 0.50

probability of being pruned out on the first iteration. Assuming the fourth document

survives to the second iteration, the smaller number of words in the topic decreases
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the probability that the document would be pruned to 0.37. The fourth iteration

of the LDA algorithm provides more relevant query results than regular expression

search. Due to the small number of files remaining, the uncertainty in the fourth

document re-emerges with a 0.44 probability of being pruned.

This experiment demonstrates LDA’s advantage over keyword search. Keyword

search does not identify the fourth document since none of the keywords were in it.

Words topically similar to the keywords are in the document, however, so LDA has a

moderate chance of returning it as a possible document.

7.2.3.2 Retrieval Topic 2: Legal Documents.

The second topic search attempts to retrieve documents for a court case involving

a particular dispute between two families over the will of a deceased member. In this

test, the name of the deceased is first included in the keyword search (Table 7.8),

increasing the chance that a keyword search would be successful.

Table 7.8: Topic 2 Keywords - With Name.

Keywords Weight
(masked name) 3
plantiff 2
defendent 2
estate 2
deceased 1
inheritance 1
marriage 1

Table 7.9 gives the results for the regular expression and LDA search using the

whole Israel corpus. Keyword search returns relevant results, minus the first docu-

ment. LDA is run and documents pruned four times but fails to provide more relevant

results. Additionally, the second document has a moderate to high probability that

it will be pruned off.

Table 7.10 demonstrates the same test, but removes the deceased’s name from
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Table 7.9: Topic 2 Document Rankings - Legal Documents With Name.

Regex LDA Iteration
Search 1 2 3 4

Document # 10999 10999 2506 613 150

Doc 1 µ 153 578.0 235.9 64.9 29.2
σ — 325.2 152.9 24.8 12.8

Doc 2 µ 60 853.0 486.6 158.6 55.6
σ — 669.6 245.7 64.6 26.7

Doc 3 µ 1 951.8 146.7 49.2 16.4
σ — 802.8 195.9 29.5 12.0

Doc 4 µ 4 1409.1 122.2 30.3 14.1
σ — 1086.6 162.4 32.7 11.9

Prob. Of Loss — 0.11 0.30 0.47 0.77

the search. In this test, keyword search fails to return the first document since it

lacks any keywords while LDA returns it each iteration. LDA, unfortunately, has a

moderately high probability of pruning the second document from the list.

Table 7.10: Topic 2 Keywords - Without Name.

Keywords Weight
plantiff 2
defendent 2
estate 2
deceased 1
inheritance 1
marriage 1

The two sets of results in Tables 7.9 and 7.11 demonstrate a main advantages of

LDA over keyword search. Since LDA is a topic model, documents are often returned

even if there isn’t a single keyword match. All that is required is for the keywords to

be topically similar to words found within the document. One of the drawbacks to the

LDA method over keyword search is that developing an effective LDA model typically

requires word pruning. As the number of documents in the LDA model decreased,

topically significant words were pruned. This meant the first two documents had a

high probability of dropping off the list.

Since all four documents are from the same disk, Table 7.12 provides the keyword

117



Table 7.11: Topic 2 Document Rankings - Legal Documents Without Name.

Regex LDA Iteration
Search 1 2 3 4

Document # 10999 10999 2481 614 152
Doc 1 µ N/A 555.1 217.3 130.6 24.2

σ — 340.4 68.9 44.7 22.8
Doc 2 µ 523 999.0 662.8 222.5 31.6

σ — 571.4 240.7 92.7 15.9
Doc 3 µ 1 911.4 167.3 51.0 5.7

σ — 619.0 82.6 132.7 48.5
Doc 4 µ 7 1390.5 132.7 65.4 7.6

σ — 1072.1 48.5 25.4 5.0
Prob. Of Loss — 0.11 0.57 0.78 0.63

Table 7.12: Topic 2 Document Rankings - Legal Documents Without Name, Single
Disk.

Regex LDA Iteration
Search 1 2 3

Document # 262 262 66 33
Doc 1 µ 20 5.8 18.1 22.7

σ — 2.9 15.1 6.7
Doc 2 µ 1 9.2 6.6 15.3

σ — 4.8 9.5 5.4
Doc 3 µ 10 3.0 1.5 1.4

σ — 2.3 0.5 0.5
Doc 4 µ 2 1.6 1.5 1.6

σ — 1.1 0.6 0.5
Prob. Of Loss — 0.00 0.16 0.84

search and LDA results using just that disk. This results in far fewer documents than

with the entire corpus and improves the keyword search results. It also requires fewer

iterations of the LDA algorithm to return good LDA results. On the other hand, the

user must search through twenty documents to find all relevant results and only ten,

on average, using LDA. In later iterations, documents 1 and 2 seem to be losing some

keywords that their ranking relies upon since they are descending the list. The final

iteration was only pruned 50% since the number of documents was small. Without

decreasing the prune rate, document 1 would have likely been pruned.
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Table 7.13: Topic 2 Document Rankings - Legal Documents Without Name, 50% Re-
tention.

Regex LDA Iteration
Search 1 2 3 4 5 6 7 8 9

Document # 10999 10999 5476 2745 1375 687 343 172 86 43

Doc 1 µ N/A 383.3 423.4 213.8 150.6 79.9 68.2 41.6 30.4 19.9
σ — 245.0 151.5 76.6 77.4 43.8 31.7 24.1 13.2 1.0

Doc 2 µ 523 1532.2 720.3 324.0 171.7 117.1 58.3 37.2 18.3 15.7
σ — 654.1 222.5 163.3 81.8 90.6 28.2 12.2 7.7 3.0

Doc 3 µ 1 389.5 370.4 86.4 44.9 8.9 10.4 7.4 3.0 0.9
σ — 249.1 164.3 40.1 26.5 18.0 7.7 5.7 2.4 1.15

Doc 4 µ 7 253.9 258.2 101.3 70.2 16.4 10.3 9.2 4.2 1.0
σ — 119.0 106.3 20.5 37.3 16.9 6.9 8.7 5.9 0.8

Prob. Loss — 0.00 0.00 0.00 0.00 0.01 0.00 0.04 0.17 0.14

LDA has trouble maintaining consistent topics for the four documents in question

due to the large quantity of noisy data. However, as the corpus is pruned away, topics

become cleaner and improve retrieval performance. This can be illustrated by using

the second experiment on the Israel corpus without the name, but only pruning half

of the documents each iteration. Table 7.13 has the results of all nine iterations,

along with the likelihood of loss. As indicated, probability of loss is essentially zero

for every step, demonstrating an improvement at the cost of processing time.

7.2.3.3 Retrieval Topic 3: Power Generation Documents.

Table 7.14: Topic 3 Keywords

Keywords Weight
electricity 3
power 2
distribut(e|ion) 2
consumption 2
generat(or|ion) 2
network 1

The third topic search uses the corpus from Serbia (rs) and Montenegro (cs) to

locate a set of seven technical documents describing electrical power distribution.
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Table 7.15: Topic 3 Document Rankings - Power Distribution Documents.

Regex LDA Iteration
Search 1 2 3 4

Document # 6,780 6,780 1,668 417 204
Doc 1 µ 70 139.4 98.0 98.8 148.3

σ — 73.3 38.8 66.2 19.5
Doc 2 µ 68 181.0 127.2 101.9 148.0

σ — 71.5 37.0 63.4 19.5
Doc 3 µ 560 101.7 114.0 95.2 108.5

σ — 41.4 37.8 45.2 27.5
Doc 4 µ 225 423.7 343.3 157.2 85.9

σ — 95.6 62.5 48.8 24.6
Doc 5 µ 61 394.3 346.8 154.5 85.4

σ — 64.4 61.3 48.3 24.9
Doc 6 µ 201 100.0 80.7 79.7 56.6

σ — 44.9 44.1 61.4 42.4
Doc 7 µ 179 374.7 281.1 191.2 121.7

σ — 74.5 45.9 48.6 30.3
Prob. Of Loss, 75% prune 0.00 0.13 0.86 1.00
Prob. Of Loss, 50% prune 0.00 0.00 0.15 0.99

Within two iterations, LDA places some of the documents higher in the query results

than the regular expression. However, pruning to fewer than 200 documents risks

pruning the fourth document. After the third iteration, the document prune rate

is decreased from 75% to 50% to prevent pruning relevant documents. Ordinarily,

predicting when to change the prune amount would be difficult. Pruning too many

too early increases the chance of removing relevant documents. Pruning too few re-

sults in larger processing times or false positive rates. Unfortunately, pruning rate

changes only help the algorithm survive one more. The next iteration has an almost

guaranteed chance of losing the first two documents when pruning off 75% and very

high probability when pruning 50%. Additionally, the document order swapped be-

tween iterations 3 and 4. Iteration 3 had low performance for documents 3 and 4

while iteration 4 had low performance for documents 1 and 2. This illustrates how

important training can be to model performance.
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Table 7.16: Topic 3 Document Rankings - Power Distribution Documents, Single Disk.

Regex LDA Iteration
Search 1 2 3 4

Document # 6,075 6,075 1,513 387 194
Doc 1 µ 70 142.0 99.5 114.0 124.9

σ — 42.9 31.0 85.2 33.7
Doc 2 µ 68 177.2 127.7 116.9 126.8

σ — 41.4 24.4 83.2 32.8
Doc 3 µ 539 94.6 106.2 100.5 85.1

σ — 17.4 27.9 46.0 15.4
Doc 4 µ 224 357.5 328.1 139.5 122.8

σ — 60.9 79.2 44.8 24.5
Doc 5 µ 61 359.1 322.0 138.7 122.3

σ — 54.5 65.0 47.3 23.4
Doc 6 µ 200 76.7 78.4 88.8 68.1

σ — 26.3 42.6 53.4 20.6
Doc 7 µ 178 315.8 249.9 179.6 129.8

σ — 37.5 26.5 57.8 29.1
Prob. Of Loss, 75% prune 0.00 0.27 0.93 0.99
Prob. Of Loss, 50% prune 0.00 0.00 0.40 0.94

Table 7.16 lists the results of running regular expression search and LDA search

on only the disk containing the target documents. This disk represents the majority

of the Serbian and Montenegro corpus, containing 6,075 on disk versus 6,780 for

the entire corpus. With the slightly smaller corpus, keyword search performs only

marginally better while LDA search has slightly better results. The probability of

pruning a relevant document is somewhat higher, mainly due to fewer documents.

The three information retrieval topics in this section demonstrate that LDA often

provides improved query results, though word pruning should be managed to avoid

pruning relevant documents. Keyword choice is important; however, LDA relaxes the

requirement to have at least one keyword in the target document. As long as the words

in the keyword list match the major topic for the document, it will likely be returned

as a query result. Iterating LDA and pruning results improve document retrieval to

a point, though there does appear to be a minimum number of documents required
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to produce an effective model. While the threshold where this happens varies from

model to model, it appears to be around 200 to 400 documents. For Tables 7.7 and

7.9, the results started to falter around 150 documents. Table 7.12 had decreased

performance between 66 and 262 documents. Table 7.15 lost query performance

around 500 documents. The optimal time to stop pruning will vary from model to

model; however, finding a method to determine this point should improve search

reliability.

7.2.4 Test 2: Subtopic Discovery.

Occasionally digital forensics practitioners may not have specific topics in mind,

but want to understand the overall topics within a corpus. Traditional techniques

manually view a sampling of the documents, or select a set of potential keywords to

isolate expected topics. Delineating between topics, on the other hand, is a major

strength of LDA. The India corpus has a large number of scientific documents from

a variety of disciplines. The experiment described in this section tests the ability of

LDA to isolate scientific documents amid other topics. Next, these documents are

broken up into their natural latent sub-topics.

An LDA model is trained on the entire India corpus of Microsoft Word documents

and non-Latin alphabet characters are discarded. Documents having fewer than ten

words and words occurring fewer than ten times in the corpus are pruned. The words

with the highest posterior probability for each topic are analyzed with an assessment

made as to the overall topic. Four topics out of thirty included scientific words

defining the topic. Documents that were most likely to belong to one of those four

topics are selected and used for the second run of the LDA algorithm.

After a second LDA model is formed from the 828 potential scientific documents,

an assessment is made on the subject of each topic and these are provided in Table
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7.17. Each document is assessed to determine if it matches the anticipated subject.

The ‘Total’ column lists the total number of documents assigned to that topic based

on dominant probability. The ‘Correct’ column provides the number of documents

that were determined to match the assessed subject. In some cases, two topics were

determined to have the same subject and they are linked with equal values in the

‘Group’ column. ‘Topic Percent’ provides the number correct in the given topic while

‘Category Percent’ lists the number correct in the indicated group.

Table 7.17: LDA Science Topic Analysis of the Indian Corpus.

Topic Category
Topic Estimated Topic Group Total Correct Percent Percent
0 Electronics 0 34 32 94.12% 94.12%
1 Quakes/Disaster Mgmt 1 6 4 66.67% 75.00%
17 1 6 5 83.33%
2 Biology 2 7 6 85.71% 85.71%
4 Nanotubes 3 19 17 89.47% 89.47%
5 Materials/Stress 4 49 48 97.96% 99.35%
22 4 106 106 100.00%
6 Navigation 5 9 7 77.78% 77.78%
7 Math 6 33 31 93.94% 93.94%
8 Chemistry 7 11 9 81.82% 93.55%
14 7 20 20 100.00%
9 Medical 8 11 6 54.55% 64.29%
26 8 3 3 100.00%
10 Vehicle Safety 9 18 17 94.44% 94.44%
11 Environmental 10 5 1 20.00% 78.57%
21 10 8 6 75.00%
28 10 15 15 100.00%
12 Electrical Power 11 82 82 100.00% 100.00%
18 11 227 227 100.00%
13 Animal Science 12 14 3 21.43% 21.43%
15 13 0 0 0%
16 Industrial Paints 14 5 5 100.00% 100.00%
29 14 78 78 100.00%
19 Construction Science 15 13 13 100.00% 100.00%
23 Batteries 16 22 22 100.00% 100.00%
24 Color/Light 17 18 10 55.56% 55.56%
27 Engineering 18 8 8 100.00% 100.00%

Total 84.30%
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Many of the documents were single pages scanned from an electronics textbook

using optical character recognition. The LDA algorithm divided the chapter topics

into broad electrical terms (topic 0), electrical chemistry (topic 14 and 23), electro-

magnetic induction (topic 12) and generators (topic 18). Topic 13 was thought to

be ‘Animal Science’, but instead described lab procedures that happened to include

handling of lab rabbits. Topic 24 was assessed as documents about color and light but

included mostly job performance reviews. Some document topics were assessed and

the results found to be similar, though with slight differences. For instance, topic 8 is

assessed as chemistry, yet the documents were defining a chemical coating product.

The testing described in this section indicate that LDA can be used successfully

to retrieve documents from a broad topic, then those topics can be divided into

sub-categories. For an analyst conducting e-discovery, topics and sub-topics can be

browsed similarly to a directory structure. Personal information could be ignored in

favor of business or financial documents, and those documents divided and explored.

In this instance, LDA correctly categorized documents over 80% of the time. Using

the techniques defined in the first experiment, keywords can be used to retrieve specific

documents from a desired sub-category.

7.2.5 Test 3: Overlapping Topic Analysis.

Words can have many meanings and the specific intent is often revealed by ex-

amining local context. Topics often overlap, with discussion of sub-topics such as

disease relevant to both medicine and biological weapons. This overlap affects both

search by keyword and LDA since overlapping topics could increase the false positive

rates. Some topical complexities can be revealed by increasing the number of topics

and causing a broad topic like “outdoor sports” to be categorized into “hunting” and

“fishing” [46] [110]. A document about fishing, however, might be categorized as
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both recreation and water conservation. LDA posterior probabilities may reveal both

topics, but only if those topics have a large enough representation.

This test looks at topical shift as the number of topics is adjusted. As boundaries

change, topical overlap can be identified. While simpler than [46] and [110], it offers

a glimpse into the challenges of using topic models to browse document corpus. This

used the “query by document” method where a document is submitted and LDA

used to identify topically related documents. The LDA model was tested against

a regular expression keyword search by first conducting a subjective analysis of the

“known” document’s topic. The keywords in Table 7.19 are derived from the pertinent

information in the document. The document chosen for this test discusses government

water policy.

The entire Indian corpus is used to estimate LDA model parameters, including

the known document about water policy. Initially, 25 topics are used. The known

document had 74% of its words assigned to a particular topic, so the 82 documents

represented by that topic are extracted and used to form a new LDA model, similar

to the methods used in test two. These documents were manually assigned labels

by reviewing the documents and these are listed in Table 7.18. The labels in this

topic are related to environmental management and agriculture, with a few unrelated

topics in the ‘Other’ category. Still, a moderately large number of documents are

unrelated to water.

Table 7.18 lists the topics derived from the LDA sub-model and reveals overlapping

topics within the document. First, discussions of water includes governmental water

policy, wastewater treatment, farming irrigation, water pollution, and using water

in mining and mineral production. Government water policy is related to pollution

since governmental regulations are often the remedy.

Table 7.20 offers some information about water topics and their topic shift as the
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Table 7.18: Documents in the Water Topic.

Topic Count
Water 15
Waste Management 15
Economy/Corporation/Trade 9
Environmental 8
Economy (farming) 6
Electricity 5
Agriculture 4
Transportation 3
Global Warming 3
Geography 2
Mining and Minerals 2
Seeds 2
Other 9

Table 7.19: Water Document Keywords.

Keywords Weight
water 3
water resource(s) 3
united nations 2
international 1
management 1

number of topics is changed from 25 to 15 and 10. The document labels have been

manually assigned with the same letter based on document similarity. Document

‘A1’ has related topics to the ones marked ‘B’ that primarily discuss water pollution.

The ‘E’ and ‘F’ series documents are scientific documents discussing the removal

of impurities from water, explaining the link with document ‘A1’ about pollution.

Document ‘D11’ is a scientific analysis of irrigation techniques, explaining the link

between that and the ‘E’ series with 15 topics, but also discusses governmental water

policy as found in our ‘C’ series documents. Document ‘C8’ is the query document

on governmental water policy.

Running a regular expression query using the keywords defined in Table 7.19

returns 73 documents and the results are provided in the last column of Table 7.20.
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Table 7.20: LDA Clustering of Water Topic.

Topics Keyword
Document 25 15 10 Order
A1 7 1 6 22
B2 7 1 2 3
B3 7 1 2 20
B4 7 1 2 19
B5 7 1 2 21
B6 7 1 2 8
B7 7 1 2 6
C8 2 3 5 2
C9 2 3 5 1
C10 2 3 5 10
D11 2 9 14 7
E12 20 9 6 24
E13 20 9 6 30
F14 20 8 6 49
F15 20 8 6 23
X1 – – – 28

The regular expression query returns all documents provided by LDA, including one

LDA did not find.

7.3 Conclusion

The techniques described in Stages I through III were tested on a data set that was

not as noisy as data typically analyzed by digital forensics practitioners. In addition,

the documents in a category were topically similar and provided a good data set

to test topic models. This chapter analyzed real-world data from a digital forensics

standpoint to determine which algorithms could prove useful to the analyst. First,

statistics were gathered on the corpus to determine which algorithms may prove

useful. Second, LDA search was compared against traditional regular expression

search using three tests. The first test uses a set of queries on three different topics

and demonstrated mixed results, with LDA performing better than regular expression
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search if enough of the documents are pruned from the set. The second test examined

topic and sub-topic browsing using LDA and demonstrated potential towards digital

discovery. The third test demonstrated that LDA does provide slightly better query

results than regular expression search in data with high topical overlap.

This chapter supports the fact that, while LDA is not a replacement for regular

expression search, it offers some advantages. It relaxes the requirement to select

keywords that match words within a target document. It also is able to effectively

divide a corpus into topics and sub-topics and is resistant to topical overlap and noise.
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VIII. Discussion and Conclusion

While data mining research has solved many problems in their attempts to extract

useful information from data, many challenges still exist. The “large data problem”

is a difficult problem, compounded by the lack of techniques utilizing multiple data

domains. Images embedded in text documents offer additional context that can be

used to develop representative models of the data. Many models, such as the gen-

erative Latent Dirichlet Allocation (LDA), provide the means for complex queries

using model probability. Unfortunately, the model parameters are usually hidden

and require estimation using the words and documents. Queries using the model will

only be as effective as the accuracy of the model parameters in representing the data.

Likewise, embedded images pose a similar challenge since they rarely come with ac-

curate annotations, making queries for relevant images difficult. Chapter II provided

much of the research focusing on improving models for the text or image domains

separately.

This research hypothesizes that models combining text and embedded images can

provide more relevant information than each domain individually. This hypothesis

is broken up into three parts. First, this research addresses the hypothesis that

automated image annotations can be improved using the local text surrounding an

embedded image. Second, these automated image annotations can be used to improve

latent topic models, providing better precision and recall in queries using unknown

documents. Third, the posterior probabilities from the latent topic model can be used

to further refine the image annotations.

Part I of this research presents novel methods for automatically annotating images

and using these annotations to improve latent topic models. The model is described

and tested using a three Stage model. In Stage I, context surrounding an image is

used to prompt an automated image annotation algorithm, demonstrating improved
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results over Automated Linguistic Indexing of Pictures in Real Time (ALIPR), a

popular generalized image annotation algorithm. Stage II uses the image annotations

from Stage I to train an LDA-based topic model, called Super-Word Latent Dirichlet

Allocation (SWLDA), demonstrating improved precision and recall over many similar

latent topic models. Stage III used the posterior probability from the SWLDA model

to improve automated image annotation results over Stage I.

The data used for Part I was real-world data taken from a set of Wikipedia articles

and provided a rich, yet topically clean, data set to test the three stages. Real-

world user data from a digital forensics perspective will not be as clean or topically

distinct. Part II of this research tests whether the models described in Part I can be

used by the digital forensics analyst to extract meaningful information. To answer

this question, several tests are performed that attempt to replicate common digital

forensics practitioner tasks. This chapter first summarizes the three stages of Part I,

then discusses the findings in Part II. It concludes with a discussion of future work.

8.1 Part I, Stage I: Context-Based Image Retrieval

Statistical pattern recognition assumes an overarching model is generating the

data and its parameters can be estimated. In reality, the model representing real

world data may be too complex for parameter extraction and data prediction. Test

data that is manually selected risks introducing bias into the results of any experiment

and image annotation research is no exception.

This research presented a method for annotating images, taking advantage of local

image context to drive specialized image annotation algorithms using image features.

By using an ensemble image annotation method to separate graphs, people-based

images, and all other images, specialized annotators may be applied for each domain.

The broad category of images that do not contain people and are not graphs is
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annotated using a signature-based histogram comparison with Earth Mover’s Distance

(EMD). Each signature is generated using ImageNet images from a particular synset

assisted by surrounding text. This algorithm was tested on a diverse assortment of real

world data taken from the INitiative for the Evaluation of XML Retrieval (INEX)

2007 data set. Using this context-driven method outperforms ALIPR, a popular

image annotation tool within the field.

While the findings of this research were promising, several questions remain. First,

any useful system needs an acceptably low false positive rate to avoid flooding the

user with spurious results. Currently there is no way of accurately determining how to

draw out words that apply to the image and which do not. While this research made

an attempt to experiment on data representing the chaotic nature of real world data,

it still is not as unstructured and unpredictable as real user data corpus. Further

research is required to determine how well this method maps to more complex data,

but initial indications from Part II indicate it may be too noisy a domain, or that

embedded images are the exception rather than the rule.

8.2 Part I, Stage II: Super Word LDA

Assuming the super-words have higher relevance, providing them greater influence

can tighten categorical clustering and result in a statistically significant increase in

recall at only a moderate loss of precision. Stage II demonstrated the SWLDA genera-

tive model for a document corpus consisting of low influence, high frequency words and

high influence, low frequency super words. Unlike other multimodal LDA algorithms,

this model leverages a common vocabulary to take advantage of the probabilistic

coupling between words and super-words. This also helps with data smoothing, since

super-words that do not have a word representation can be discarded.

The model was tested using super-words derived from the automated image anno-
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tation technique defined in Stage I. Additionally, over 6,000 documents were drawn

from the INEX 07 dataset [28] and clustered according to their specified categories.

Comparison testing with Latent Semantic Analysis (LSA), LDA, Blob Multimodal

Latent Dirichlet Allocation (BMMLDA), and Weighted Term Latent Dirichlet Allo-

cation (WTLDA) showed that SWLDA offset a slight drop in precision with a higher

recall and F-measure, especially as the number of topics was increased. The cal-

culated precision, recall, and F-measure indicate an overall improvement using the

SWLDA process over standard Gibbs sampling LDA.

While this dissertation tested the algorithm using super-words derived from im-

ages, it will work for any low density, high relevance words. This could include

embedded sound with captions, table data, graph information, or other embedded

data. While accurate super-words are important, this research has demonstrated it

still can perform even with moderate super-word inaccuracy.

SWLDA was tested on documents containing text and images. The model could

be used with audio converted into text and used to co-cluster with documents or a

number of other media types. Section headers or captions can be used as super-words

to improve clustering of documents. It could even be extended outside of the text

domain, such as with applying LDA to large graphs [55]. If some of the nodes can be

identified to be more relevant towards the applicable groupings than others, SWLDA

can improve latent group clustering.

Once a model’s parameters are predicted, super-word posterior probability can

be used to rank-order automated image annotation. Those annotations without top-

ical relevance are dropped while highly probable annotations are augmented with

expanded synonyms. Iterating this process may further improve latent topic extrac-

tion. Initial testing has demonstrated promise.
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8.3 Part I, Stage III: Image Annotation Refinement

Stage III demonstrated the posterior probabilities from Stage II could be used

effectively to improve automated image annotations from Stage I. However, expand-

ing the words and iterating the model further produced questionable results. These

results require further Amazon Mechanical Turk (AMT) validation to determine if

continued iteration is productive.

8.4 Part II: Topic Models in High Noise Data

Part II attempts to address whether the models described in this dissertation

can be used by the digital forensics analyst to extract meaningful information from a

corpus of real-world digital forensics data. First statistics were calculated on the user-

generated data in the Real Data Corpus (RDC) to identify areas suitable for search

evaluation. Using this information, a series of tests were conducted that replicate

common digital forensics tasks. The first test used a set of queries on three different

topics, comparing search using LDA to traditional regular expression search. The

second test measured the ability of LDA to topically segment a country corpus, then

separate a selected topic into subtopics. Finally, the third test compared query using

LDA to query using regular expression in a topically noisy environment.

The RDC statistical analysis offers a variety of research targets. While many disks

contain only operating system and application files, a number include a variety of

documents, images, and sound files, among others. Many documents have embedded

images and most images on disk include EXIF information. This, along with e-mails,

log files, Excel spreadsheets and Powerpoint presentations, provide a rich data source

for research. Documents are written in a variety of languages, some on the same disk.

Most disks contain documents in the native language, but also include a number in

English. With the focus of this research on comparing keyword search against LDA
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search, this research constrained the data to English word or text documents.

LDA search demonstrated pros and cons over regular expression search. First, reg-

ular expression search often produced similar results within the first iteration, though

LDA took four iterations. While pruning using LDA often resulted in higher precision

due to smaller query results, it sometimes produced false negatives by pruning too

much. Additionally, using LDA to search takes much longer. A regular expression

search on the Israeli corpus took approximately one minute, yet four iterations of the

LDA algorithm took over eight hours

On the other hand, LDA located documents even though the keywords used did

not match any words within the document itself. LDA can find similar documents

using a query document approach, unlike regular expression search which requires

the query document be first converted into a keyword list. Additionally, LDA can

automatically categorize documents into topics, permitting intelligent browsing of the

document corpus.

8.5 Future Work

There are a number of potential avenues for further research. First, the corpus

itself provides data useful in language processing, syntactical analysis, image pro-

cessing, sound file analysis, and cross-domain techniques, among many others. Due

to the manpower required to develop recall information within the RDC, this re-

search limits its analysis to precision. Manually categorizing the documents within

the corpus determines how many false negatives are produced by document query

algorithms. Additionally, some tests required subjective analysis about document

topics and could be improved by using a survey of varying opinions on document

topics. Amazon Mechanical Turk has been successfully employed for this purpose in

our previous research [90]. LDA and regular expression keyword search had strengths
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that could be combined effectively into a hybrid technique.

During analysis of the results from Stage I and III, a number of erroneous anno-

tations are passed on as valid and expanded. One example is the term ‘wing’ for an

image of an aircraft. One definition that is commonly accepted by the algorithm is as

“The fender of a motor vehicle”. This is expanded into such words as ‘bumper’ and

‘flap’, which do not apply to the image of an aircraft. Ideally, the topic of a document

about aircraft would not usually fit the use of these words to annotate the image.

Future research could look into ways of further pruning these erroneous results, such

as using WordNet clustering combined with topical posterior probability to eliminate

poorly-fitting words.

This dissertation describes approaches that demonstrate that text surrounding an

image can be used to improve automated image annotation. These annotations, in

turn, can be used to improve latent topic extraction. While effective, data consists

of many different formats beyond text and images. Future research could use text to

improve sound file analysis, video analysis, and a myriad of different formats.

Besides different formats, specialized analyzers can be developed to analyze brows-

ing or e-mail patterns. Attempts at analyzing web pages to determine browsing habits

encountered significant noise. Most web pages include advertisements, links to related

sites, and administrative links. Only a small portion of the page may actually be

relevant to the user’s purposes. These sections, however, may have common charac-

teristics that can be leveraged to extract the useful information. For instance, most

relevant user data may be in the center of the page and incorporate the majority of

words. Images within this text may be relevant, whereas images along the edges of

the web page may be advertisements that can be ignored. By pruning irrelevant data,

SWLDA could be performed on the images using surrounding text to help annotate

web images.
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Regular expression search can be incorporated into the topic model processes to

improve results. It can be used as a preprocessing step to prune unrelated results,

or be used after a model has been generated on specific topics. Regular expression

results could be combined with the posterior probability from the topic models to

create a hybrid ranking of query results.

This research demonstrates leveraging cross-domain solutions can extract better

information from a human perspective. Automated image annotation was improved

by using the local context surrounding an embedded image. The annotations can

be fed into the SWLDA algorithm to improve the recall and overall F-measure of

the latent topic models. Finally, the posterior probability will improve the image

annotation results.
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Appendix A. Gibbs Sampling Super-Word Derivation

This derivation follows a similar approach to [16], building a proportional prob-

ability model to facilitate parameter estimation using Gibbs sampling and employs

the assumption that words and super-words are drawn from a common vocabulary.

Dirichlet priors β and η are assumed over the support of the entire corpus vocabulary.

The probability distribution can be represented by Equation 1.1.

p(z, w, s, θ, φ, τ ;α, β, η) =
K∏
k=1

p(φk; β)p(τk; η)
M∏
m=1

p(θm;α)(
Nm∏
n=1

p(zm,n|θm)p(wn|φk)×
Sm∏
i=1

p(zm,Nm+i|θm)p(si|τk)

)
(1.1)

Assume the following distributions per Section V.

p(wi|zi, φ(zi)) ∼ Discrete(φ(zi)), (1.2a)

p(φ) ∼ Dirichlet(β), (1.2b)

p(si|zi, τ (zi)) ∼ Discrete(τ (zi)), (1.2c)

p(τ) ∼ Dirichlet(η), (1.2d)

p(zi|θ(di)) ∼ Discrete(θ(di)), (1.2e)

p(θ) ∼ Dirichlet(α). (1.2f)

The proportional equation with respect to zi that facilitates sampling using a

Monte-Carlo simulation appears in Equation 1.3. For the purposes of this derivation,

the Bayesian denominator is not shown and normalization terms are calculated at the

end.
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p(z, w, s, θ, φ, τ ;α, β, η) =

∫ ∫ ∫
p(z, w, s, θ, φ, τ ;α, β, η)dθdφdτ (1.3)

Since θ and φ are isolated to their own terms, they can be separated into their

own integrals.

p(z, w, s, θ, φ, τ ;α, β, η) =
M∏
m=1

∫
p(θm;α)

Nm+Sm∏
n=1

p(zm,n|θm)dθm

×
K∏
k=1

∫
p(φk; β)

M∏
m=1

Nm∏
n=1

p(zm,n|θm)p(w|φ)dφk

×
K∏
k=1

∫
p(τk; η)

M∏
m=1

Sm∏
i=1

p(zm,i|θm)p(s|τ)dτk

(1.4)

Expanding the Dirichlet and discrete distributions based on their definitions from

Equations 1.2a - 1.2f results in:

p(z, w, s, θ, φ, τ ;α, β, η) =
M∏
m=1

∫
Γ(
∑K

k=1 αk)∏K
k=1 Γ(αk)

K∏
k=1

θαk−1m,k

Nm+Sm∏
n=1

θm,zm,ndθm

×
K∏
k=1

Γ(
∑V

v=1 βv)∏V
v=1 Γ(βv)

V∏
v=1

φβv−1m,k

M∏
m=1

Nm∏
n=1

φzm,n,wm,ndφk

×
K∏
k=1

Γ(
∑V

v=1 ηv)∏V
v=1 Γ(ηv)

V∏
v=1

τ ηv−1m,k

M∏
m=1

Sm∏
i=1

τzm,Nm+i,sm,idτk.

(1.5)

The innermost products of each term can be simplified using an exponent of word

counts, allowing the θ, φ and τ products to be combined into one. The count variable

is ck,d,t,w where k indicates the topics, d the document, t the token, and w a boolean

determining either word or super-word.
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p(z, w, s, θ, φ, τ ;α, β, η) =
M∏
m=1

∫
Γ(
∑K

k=1 αk)∏K
k=1 Γ(αk)

K∏
k=1

θ
αk+ck,m,•,•−1
m,k dθm

×
K∏
k=1

∫
Γ(
∑V

v=1 βv)∏V
v=1 Γ(βv)

V∏
v=1

φ
βv+ck,•,v,γw−1
k,v dφk

×
K∏
k=1

∫
Γ(
∑V

v=1 ηv)∏V
v=1 Γ(ηv)

V∏
v=1

τ
ηv+ck,•,v,γs−1
k,v dτk

(1.6)

Multiplying each term by two fractions, each an inverse of the other that results

in a product of one, allows sliding the integral over to isolate a new Dirichlet density.

p(z, w, s, θ, φ, τ ;α, β, η) =
M∏
m=1

Γ(
∑K

k=1 αk)∏K
k=1 Γ(αk)

∏K
k=1 Γ(ck,m,•,• + αk)

Γ(
∑K

k=1 ck,m,•,• + αk)∫
Γ(
∑K

k=1 ck,m,•,• + αk)∏K
k=1 Γ(ck,m,•,• + αk)

K∏
k=1

θ
αk+ck,m,•,•−1
m,k dθm

×
K∏
k=1

Γ(
∑V

v=1 βv)∏V
v=1 Γ(βv)

∏V
v=1 Γ(ck,•,v,γw + βv)

Γ(
∑V

v=1 ck,•,v,γw + βv)∫
Γ(
∑V

v=1 ck,•,v,γw + βv)∏V
v=1 Γ(ck,•,v,γw + βv)

φ
βv+ck,•,v,γw−1
k,v dφk

×
K∏
k=1

Γ(
∑V

v=1 ηv)∏V
v=1 Γ(τv)

∏V
v=1 Γ(ck,•,v,γs + ηv)

Γ(
∑V

v=1 ck,•,v,γs + ηv)∫
Γ(
∑V

v=1 ck,•,v,γs + ηv)∏V
v=1 Γ(ck,•,v,γs + ηv)

τ
τv+ck,•,v,γs−1
k,v dτk

(1.7)

Since each integral represents an entire support of a Dirichlet distribution, it equals

one. This means each integral can be dropped from the equation. In addition, since

we’re only seeking to maintain proportionality, the Dirichlet constant fractions at the

beginning of each term can be dropped, greatly simplifying the equation (not possible

if your Dirichlet priors are variable).
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p(z, w, s, θ, φ, τ ;α, β, η) ∝
M∏
m=1

∏K
k=1 Γ(ck,m,•,• + αk)

Γ(
∑K

k=1 ck,m,•,• + αk)
×

K∏
k=1

∏V
v=1 Γ(ck,•,v,γw + βv)

Γ(
∑V

v=1 ck,•,v,γw + βv)

×
K∏
k=1

∏V
v=1 Γ(ck,•,v,γs + ηv)

Γ(
∑V

v=1 ck,•,v,γs + ηv)

(1.8)

Sampling draws a token td,e from the document m. The goal is to isolate the terms

dependent upon sample position (d, e), though that depends on whether td,e ∈ W or

td,e ∈ S. This requires the conditional formula in Equation 1.9.

p(zd,e|z−(d,e),w, s, α, β, η) ∝



td,e ∈ W :
∏

m 6=d

∏K
k=1 Γ(ck,m,•,• + αk)

Γ(
∑K

k=1 ck,m,•,• + αk)
×
∏K

k=1 Γ(ck,d,•,• + αk)

Γ(
∑K

k=1 ck,d,•,• + αk)

×
∏K

k=1

∏
v 6=wd,e Γ(ck,•,v,γw + βv)× Γ(ck,•,wd,e,γw + βv)

Γ(
∑V

v=1 ck,•,v,γw + βv)

×
∏K

k=1

∏
v 6=wd,e Γ(ck,•,v,γs + ηv)× Γ(ck,•,wd,e,γs + ηv)

Γ(
∑V

v=1 ck,•,v,γs + ηv)

td,e ∈ S :
∏

m 6=d

∏K
k=1 Γ(ck,m,•,• + αk)

Γ(
∑K

k=1 ck,m,•,• + αk)
×
∏K

k=1 Γ(ck,d,•,• + αk)

Γ(
∑K

k=1 ck,d,•,• + αk)

×
∏K

k=1

∏
v 6=sd,e Γ(ck,•,v,γw + βv)× Γ(ck,•,sd,e,γw + βv)

Γ(
∑V

v=1 ck,•,v,γw + βv)

×
∏K

k=1

∏
v 6=sd,e Γ(ck,•,v,γs + ηv)× Γ(ck,•,sd,e,γs + ηv)

Γ(
∑V

v=1 ck,•,v,γs + ηv)
(1.9)

By isolating a proportion based specifically on the selected d and e values along

with the membership of td,e, terms (constants) can be dropped that don’t depend

upon d and e specifically. This results in the simplified Equation 1.10.
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∝



td,e ∈ W :

∏K
k=1 Γ(ck,d,•,• + αk)

Γ(
∑K

k=1 ck,d,•,• + αk)
×
∏K

k=1

Γ(ck,•,wd,e,γw + βv)

Γ(
∑V

v=1 ck,•,v,γw + βv)
×

∏K
k=1

Γ(ck,•,wd,e,γs + ηv)

Γ(
∑V

v=1 ck,•,v,γs + ηv)

td,e ∈ S :

∏K
k=1 Γ(ck,d,•,• + αk)

Γ(
∑K

k=1 ck,d,•,• + αk)
×
∏K

k=1

Γ(ck,•,sd,e,γw + βv)

Γ(
∑V

v=1 ck,•,v,γw + βv)
×

∏K
k=1

Γ(ck,•,sd,e,γs + ηv)

Γ(
∑V

v=1 ck,•,v,γs + ηv)

(1.10)

Next, the word indicated by d, e and f is removed from the equation by deriving

an equivalent form. Based on the fact that c = c−(d,e,f) + 1, we can add +1 to each

place the word is removed to maintain equivalency between Equation 1.10 and 1.11

[16]. Terms that are not losing a word have +1− 1 added to the term for eliminating

the Γ term in a later step.
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td,e ∈ W :

∏
k 6=zd,e Γ(c

−(d,e,γw)
k,d,•,• + αk)× Γ(c

−(d,e,γw)
zd,e,d,•,• + αzd,e + 1)

Γ(1 +
∑K

k=1 c
−(d,e,γw)
k,d,•,• + αk)

×
∏

k 6=zd,e

Γ(c
−(d,e,γw)
k,•,wd,e,γw + βwd,e)

Γ(
∑V

v=1 ck,•,v,γw + βv)
×

Γ(c
−(d,e,γw)
zd,e,•,wd,e,γw + βwd,e + 1)

Γ(1 +
∑V

v=1 c
−(d,e,γw)
zd,e,•,v,γw + βv)

×
∏

k 6=zd,e

Γ(ck,•,wd,e,γs + ηwd,e)

Γ(
∑V

v=1 ck,•,v,γs + ηv)
×

Γ(czd,e,•,wd,e,γs + ηwd,e + 1− 1)

Γ(1− 1 +
∑V

v=1 czd,e,•,v,γs + ηv)

td,e ∈ S :

∏
k 6=zd,e Γ(c

−(d,e,γs)
k,d,•,• + αk)× Γ(c

−(d,e,γs)
zd,e,d,•,• + αzd,e + 1)

Γ(1 +
∑K

k=1 c
−(d,e,γs)
k,d,•,• + αk)

×
∏

k 6=zd,e

Γ(ck,•,sd,e,γw + βsd,e)

Γ(
∑V

v=1 ck,•,v,γw + βv)
×

Γ(czd,e,•,sd,e,γw + βsd,e + 1− 1)

Γ(1− 1 +
∑V

v=1 czd,e,•,v,γw + βv)

×
∏

k 6=zd,e

Γ(c
−(d,e,γs)
k,•,sd,e,γs + ηsd,e)

Γ(
∑V

v=1 ck,•,v,γs + ηv)
×

Γ(c
−(d,e,γs)
zd,e,•,sd,e,γs + ηsd,e + 1)

Γ(1 +
∑V

v=1 c
−(d,e,γs)
zd,e,•,v,γs + ηv)

(1.11)

Based on the equivalency Γ(x + 1) = x × Γ(x) [16], separated terms can be

modified and Γ terms re-combined back into the product where possible. This results

in Equation 1.12.
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∝



td,e ∈ W :

∏K
k=1 Γ(c

−(d,e,γw)
k,d,•,• + αk)× (c

−(d,e,γw)
zd,e,d,•,• + αzd,e)

Γ(1 +
∑K

k=1 c
−(d,e,γw)
k,d,•,• + αk)

×
∏

k 6=zd,e

Γ(c
−(d,e,γw)
k,•,wd,e,γw + βwd,e)

Γ(
∑V

v=1 ck,•,v,γw + βv)
×

Γ(c
−(d,e,γw)
zd,e,•,wd,e,γw + βwd,e)

Γ(
∑V

v=1 c
−(d,e,γw)
zd,e,•,v,γw + βv)

×
(c
−(d,e,γw)
zd,e,•,wd,e,γw + βwd,e)∑V
v=1(c

−(d,e,γw)
zd,e,•,v,γw + βv)

×
∏

k 6=zd,e

Γ(ck,•,wd,e,γs + ηwd,e)

Γ(
∑V

v=1 ck,•,v,γs + ηv)
×

Γ(czd,e,•,wd,e,γs + ηwd,e − 1)

Γ(−1 +
∑V

v=1 czd,e,•,v,γs + ηv)

×
(czd,e,•,wd,e,γs + ηwd,e − 1)∑V
v=1(czd,e,•,v,γs + ηv)− 1

td,e ∈ S :

∏K
k=1 Γ(c

−(d,e,γs)
k,d,•,• + αk)× (c

−(d,e,γs)
zd,e,d,•,• + αzd,e)

Γ(1 +
∑K

k=1 c
−(d,e,γs)
k,d,•,• + αk)

×
∏

k 6=zd,e

Γ(ck,•,sd,e,γw + βsd,e)

Γ(
∑V

v=1 ck,•,v,γw + βv)
×

Γ(czd,e,•,sd,e,γw + βsd,e − 1)

Γ(−1 +
∑V

v=1 czd,e,•,v,γw + βv)

×
(czd,e,•,sd,e,γw + βsd,e − 1)∑V
v=1(czd,e,•,v,γw + βv)− 1

×
∏

k 6=zd,e

Γ(c
−(d,e,γs)
k,•,sd,e,γs + ηsd,e)

Γ(
∑V

v=1 ck,•,v,γs + ηv)
×

Γ(c
−(d,e,γs)
zd,e,•,sd,e,γs + ηsd,e)

Γ(
∑V

v=1 c
−(d,e,γs)
zd,e,•,v,γs + ηv)

×
(c
−(d,e,γs)
zd,e,•,sd,e,γs + ηsd,e)∑V
v=1(c

−(d,e,γs)
zd,e,•,v,γs + ηv)

(1.12)

All the Γ terms can be considered constant, so are dropped. Remaining denomina-

tors are reduced to shorthand. Since β and η are constant symmetric priors,
∑V

v=1 βv

is replaced with V ∗ β. This results in the final derivation:
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p(z, w, s, θ, φ, τ ;α, β, η) ∝



td,e ∈ W :
(c
−(d,e,γw)
zd,e,d,•,• + αzd,e)× (c

−(d,e,γw)
zd,e,•,wd,e,γw + βwd,e)

(c
−(d,e,γw)
zd,e,•,•,γw + V β)

×
(czd,e,•,wd,e,γs + ηwd,e − 1)

(czd,e,•,•,γs + V η)− 1

td,e ∈ S :
(c
−(d,e,γs)
zd,e,d,•,• + αzd,e)× (c

−(d,e,γs)
zd,e,•,sd,e,γs + ηsd,e)

(c
−(d,e,γs)
zd,e,•,•,γs + V η)

×
(czd,e,•,sd,e,γw + βsd,e − 1)

(czd,e,•,•,γw + V β)− 1
,

(1.13)

normalized over the sum of all K.
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Appendix B. Latent Dirichlet Allocation

The Latent Dirichlet Allocation (LDA) is a generative model that explains a set of

observations using an unobserved set of probability distributions and assumed latent

topics. It is an evolution from the Probabilistic Latent Semantic Analysis (pLSA)

model [57] which can be considered an LDA model with multinomial priors generated

using a uniform distribution. Since Blei, et al. defined the model [14] in 2003, it has

been used and expanded in a number of different ways [48] [78] [109]. This appendix

provides an intuitive explanation of the LDA model and associated concepts. It first

discusses some of the terminology and concepts, then builds these into the overall

LDA model.

B.1 Latent Topics and Latent Topic Models

A latent topic is a topic that is assumed present but is not currently visible. It

typically defines topics within a text document corpus, but could be used to define

topics within any information corpus. A topic is what a document is about concep-

tually, where the document associated with the topic would include words pertaining

to the medical field or dog training.

Latent topic models assume these hidden topics exist within a collection of docu-

ments in different proportions. A single document may contain 30% of one topic and

70% of another, while a particular word may be generated by one topic 20% of the

time and another 80%. These topics, incorporated into a probability model, provide

predictive capabilities for unknown documents. By analyzing the words within the

unknown document, the topics contained within the document can be predicted using

a latent topic model.

For many latent topic models, a topic’s subject is revealed using the words most

likely to be generated by that topic. Table B.1 provides an example of an eleven-topic
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Table B.1: LDA Topics with Highest Probability Associated Words.

Topic 1 ship navy war class hms ships royal
Topic 2 aircraft wing maximum first service air range
Topic 3 tank gun tanks vehicle war used also
Topic 4 first one also dog time two elephant
Topic 5 patrol submarine war ship two navy june
Topic 6 dog dogs breed terrier can breeds also
Topic 7 mountain mount peak mountains north range south
Topic 8 aircraft flight wing air can also used
Topic 9 plant species lightgreen also used can flower
Topic 10 building tower beinn tallest center city world
Topic 11 aircraft air missile system radar range force

LDA model that was generated from the same data used in Stages I through III of

this dissertation. Based on the words that have the highest probability of belonging

to that topic, we can infer certain subjects. Topics 1 and 5 are likely related to naval

ships and warfare, while topics 2, 8 and 11 appear to discuss aircraft.

B.2 Generative Models and Processes

The LDA model is considered a generative model. A generative model assumes

that the observable data was generated by a set of hidden statistical distributions.

In the case of LDA, the model would generate documents and topics, then those

documents and topics would generate words according to certain distributions. In

reality, the generative process is purely theoretical since the observed data is typically

all that is available. The model does, however, provide greater flexibility since it offers

the ability to generate new data and determine if unknown data was generated by

the model.

The LDA theoretical generative process is illustrated in B.1, where the number

of words N is generated according to a Poisson distribution. The multinomial pa-

rameters for document topics, given as θ, are generated using a Dirichlet distribution

with priors α. For each word that is generated, a topic zn is selected based on the
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multinomial distribution θ. The multinomial distribution φzn for the word probability

is dependent, or conditioned, on the topic that was selected.

Algorithm B.1 LDA Generative Process

1. Choose N ∼ Poisson(ξ)

2. Choose θ ∼ Dir(α)

3. For each of the N words wn:

(a) Choose a topic zn ∼Multinomial(θ)

(b) Choose a word wn from p(wn|zn, φ), a multinomial probability conditioned
on the topic zn

B.3 Bayes Networks and the LDA Plate Diagram

Generative models using a Bayesian network are able to draw complex inferences

using a network of random variables. Figure B.1 provides a simple Bayesian network

that models the probability of a power brown-out. Power consumption depends, in

part, on air conditioner usage and whether people are at home or work. The proba-

bility of it being hot outside depends partly on whether it is summer and daytime.

Figure B.1 provides the Conditional Probability Table (CPT) for each random vari-

able, indicating the likelihood that each event takes place. On any given day, there’s

a 5/7 chance of it being a weekday, or a 0.71 probability. There’s a 0.80 probability

of the weather being hot during a summer day while only a 0.01 probability during a

non-summer night.

We can therefore calculate certain events, such as the probability of a brown-out

given that it is a summer weekday

P (g|s, w) = α
∑
h

∑
d

P (g|h,w)P (h|s, d)P (d) (2.14)

146



Power 

Brown-out 

G 
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S 

Weekday 

W 

Daytime

D 

Hot 

H 

P(W) 

T 0.71 

F 0.29 

P(D) 

T 0.42 

F 0.58 

P(S) 

T 0.25 

F 0.75 

Summer P(S) 

Daytime P(D) T F 

T 0.80 0.60 

F 0.30 0.01 

Hot P(H) 

Weekday P(W) T F 

T 0.20 0.10 

F 0.10 0.03 

Figure B.1: Example Bayesian Network.

where α is a normalizing constant derived from the overall joint distribution. This

results in a 0.15 probability that we are having a brown-out on a summer weekday. We

can also determine the probability that it is hot outside, given that we are currently

having a brown-out, or

p(h|g) =
p(g|h)p(h)

p(g)
(2.15)

using Bayes rule. This results in

p(h|g) =

∑
w p(g|w, h)p(w)∑
w

∑
h p(g|w, h)

. (2.16)

Bayes networks can be described using a plate diagram. Similar to the exam-

ple in B.1, a plate diagram includes nodes representing the elements of uncertainty

and arrows representing dependencies. However, a plate diagram also indicates the

number of times a graph segment repeats. Figures 2.2(a) and 2.2(b) illustrate the

advantages of a plate diagram. Figure 2.2(a) illustrates a Bayesian network where z

appears N times. If N was a large number, the graph becomes excessively complex.
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(b) Plate Diagram Version.

Figure B.2: Image Frequency Example.

Figure 2.2(b) illustrates the same Bayesian network, but does so in a much simpler

fashion.

Figure B.3 illustrates the plate diagram for LDA. The outside plate indicates

there are M instances of the multinomial distribution θ, or one per document. The θ

distribution provides the probability that a topic z will be generated as topic 1 - K.

There are N words, as indicated by the inner plate and each word has an associated

topic z. The words are generated by K multinomial distributions, represented by φ .

Finally, each multinomial distribution is generated using a Dirichlet distribution with

priors α and β.

B.4 Latent Dirichlet Allocation Parameter Estimation

LDA is typically used to model a document corpus, where each document is consid-

ered a “bag of words” in which order does not matter. By using word co-occurrence,

the model is able to identify topically similar documents and words by finding words

that occur frequently in a subset of documents but not elsewhere. For instance,

148



w

z

θ

α

ϕ
N

M
K

β

Figure B.3: Latent Dirichlet Allocation [14].

stethoscope, prescription, and diagnosis may occur frequently in medical documents,

but will rarely occur in documents about music.

Note that solving for CPTs, in particular the hidden latent models, is not straight-

forward, since only the words are observable. Directly calculating the parameters is

an NP-complete problem and requires using approximation techniques. One such

technique, called Gibbs Sampling, uses a Monte-Carlo simulation to gradually adjust

model parameters [48]. The process is outlined in Algorithm B.2.

P (zi = j|z−i, w) ∝
n
(wi)
−i,j + β

n
(•)
−i,j +Wβ

n
(di)
−i,j + α

n
(di)
−i + Tα

(2.17)

Equation 2.17 is derived by reducing the joint probability distribution down to

only those that are affected by changes in topic zi with respect to word wi. The

result is a proportional sampling equation that can be used in the Gibbs sampler.

The super-word sampling equation proof is defined in Appendix A and is similar to

the proof for Equation 2.17.
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Algorithm B.2 LDA Gibbs Sampling Algorithm

Input: words
Output: model parameters
Randomize document order and word order
Randomly assign topics to words
while not converged do

for i=1 to N do
Randomly select a topic based on existing parameters and Equation and assign
to zi for word wi
Adjust parameters

end for
end while

B.5 LDA Inference

Once the model parameters are calculated, Bayes rule can be used to draw infer-

ences about the data. The probability of a word given a topic, or p(w|z) can be used

to rank order the words associated with a particular topic and understand what that

topic is about. The topic distribution of unknown documents can be calculated using

Gibbs sampling or other techniques [54] to determine document topic probabilities.
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Glossary

Bayesian network A probabilistic graphic model that represents random variables
and conditional dependencies using a graph. The network facilitates inferences
about certain events given other events have occurred.

Daubechies wavelets A family of orthogonal wavelets that provide a localized fre-
quency measures using a fast wavelet transform.

Dirichlet distribution A distribution based off the beta distribution that repre-
sents the probability of k rival events.

Earth Mover’s Distance A measure designed to compare two histograms for sim-
ilarity. It measures the amount of “earth” that must be moved to turn one
histogram into another.

ensemble director An element of a model that chooses classifiers based on at-
tributes of the data to be classified.

F-measure A harmonic mean between precision and recall that can be weighted to
prefer one over the other.

generative model A model that assumes observable data was generated from a
typically hidden model.

hypernym A more general form of another word. This word has a “is-a” relationship
with another word. Example: ‘mammal‘ is a hypernym of ‘dog’.

hyponym A more specific form of another word. This word has a “type-of” rela-
tionship with another word. Example: ‘dog‘ is a hyponym of ‘mammal’ as it is
a more general form.

image blobs Spatially-contiguous regions of an image that have similar color or
frequency attributes. Examples include regions of sky, grass, or a horse.

ImageNet An online database of images organized by WordNet synonymous sets.
Includes features useful in data mining research, from bounding boxes to SIFT
features.

Latent Dirichlet Allocation A generative model that explains a set of observa-
tions using multinomial distributions. The multinomial distributions can be
explained using Dirichlet distributions.

latent topic model A model that assumes hidden topics exist within the data.
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Markov chain monte-carlo A method to determine hidden model parameters us-
ing observations generated by the model. By randomly sampling data condi-
tioned on previously-sampled data, the parameters can be estimated.

multimodal data Data consisting of multiple formats, such as image and text or
video and audio.

multinomial distribution A probability distribution capable of representing n in-
dependent trials with k categories. Each has a fixed probability.

plate diagram A Bayesian network diagram that includes plates signifying instances
of probabilistic events.

posterior probability The probability of an event assigned after an event or num-
ber of similar events have taken place.

precision Pertaining to document retrieval queries, precision indicates the percent
of in-category documents retrieved out of all documents retrieved.

Real Data Corpus A set of user’s data drawn from real hard drives acquired on
the open market. The corpus was built by the Naval Postgraduate School and
University of North Carolina.

recall Pertaining to document retrieval queries, recall indicates the percent of in-
category documents retrieved out of all in-category documents within the cor-
pus.

regular expression A sequence of characters, including metacharacters with special
meaning, that define a search pattern.

summarization Reducing the amount of data or number of data dimensions into a
representative subset.

super-word A word that is assumed to have higher contextual relevance than a
regular word.

synset A WordNet term describing a synonymous set of words, or words that have
similar meaning.

WordNet An online dictionary that organizes words into synonymous sets, or synsets.
It includes hierarchical relationships between synsets using hypernyms and hy-
ponyms, among others.
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